Solutions to the "QUIZ" for Lecture 13

Corrected version (Oct. 27, 2020) thanks to Aastha Kasera, who found a typo (and won a dollar!)

1. Change the order of integration in

$$
\int_{1}^{4} \int_{0}^{\ln y} f(x, y) d x d y
$$

Sol.: The region of integration is

$$
D=\{(x, y) \mid 1 \leq y \leq 4,0 \leq x \leq \ln y\}
$$

This is a type II (Horizontally Simple) region. The main road is along the y-axis from $(0,1)$ to $(0,4)$, and the "side-streets" extend from the y-axis (where $x=0$) to the curve $x=\ln y$. Drawing it, we get that the projection on the x-axis of that region is between $x=0$ and $x=\ln 4$, and making this the main road, the vertical side-streets extend from the curve $x=\ln y$, that we should rewrite, from the new perspective as $y=e^{x}$, to the horizontal line $y=4$. So a type I description is

$$
D=\left\{(x, y) \mid 0 \leq x \leq \ln 4, e^{x} \leq y \leq 4\right\}
$$

Finally the integral is

$$
\int_{0}^{\ln 4} \int_{e^{x}}^{4} f(x, y) d y d x
$$

This is the ans. (type: double integral of a general function on a specific domain).
2. Evaluate

$$
\int_{0}^{2} \int_{y / 2}^{1} \frac{1}{\left(x^{2}+1\right)^{2}} d x d y
$$

by inverting the order of integration and evaluating the new iterated integral.
Sol. The region implied by the given iterated integral is

$$
D=\{(x, y) \mid 0 \leq y \leq 2, y / 2 \leq x \leq 1\}
$$

This is a type II description. If you draw it, the main road is along the y-axis from $y=0$ to $y=2$ and the horizontal side streets are from the line $x=y / 2$ to the vertical line $x=1$. This turns out to be a triangle with vertics $(0,0),(1,0),(1,2)$.

Let's find a type I description of D. The projection on the x-axis is from $x=0$ to $x=1$ and the horizontal side streets starts at $y=0$ and end at the line $x=y / 2$ that we now must write at $y=2 x$. So the type I description of D is:

$$
D=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 2 x\} .
$$

Now we can interchange the order of integration and get

$$
\int_{0}^{1} \int_{0}^{2 x} \frac{1}{\left(x^{2}+1\right)^{2}} d y d x
$$

We first do the inner integral

$$
\begin{gathered}
\int_{0}^{2 x} \frac{1}{\left(x^{2}+1\right)^{2}} d y=\frac{1}{\left(x^{2}+1\right)^{2}}\left(\int_{0}^{2 x} d y\right) \\
=\frac{1}{\left(x^{2}+1\right)^{2}}\left(\left.y\right|_{0} ^{2 x}\right)=\frac{1}{\left(x^{2}+1\right)^{2}}(2 x-0)=\frac{2 x}{\left(x^{2}+1\right)^{2}} .
\end{gathered}
$$

Now we are ready to do the outer integral

$$
\int_{0}^{1} \frac{2 x}{\left(x^{2}+1\right)^{2}} d x
$$

This calls for a u-substitution. $u=x^{2}+1,2 x d x=d u$, and when $x=0, u=1$, and when $x=1$, $u=2$.

$$
\begin{aligned}
& \int_{1}^{2} \frac{1}{u^{2}} d u=\int_{1}^{2} u^{-2} d u=\left.\frac{u^{-1}}{-1}\right|_{1} ^{2} \\
& \quad=\left.\frac{-1}{u}\right|_{1} ^{2}=\frac{-1}{2}-\frac{-1}{1}=\frac{1}{2}
\end{aligned}
$$

Ans.: $\frac{1}{2}$ (type: number).

