Solutions to the "QUIZ" for Lecture 12

1. Calculate the iterated integral

$$
\int_{1}^{2} \int_{-1}^{1}\left(x+y^{2}\right) d x d y
$$

Sol. We first do the inner integral

$$
\int_{-1}^{1}\left(x+y^{2}\right) d x=\frac{x^{2}}{2}+\left.y^{2} x\right|_{-1} ^{1}=\left(\frac{1^{2}}{2}+y^{2} \cdot 1\right)-\left(\frac{(-1)^{2}}{2}+y^{2} \cdot(-1)\right)=2 y^{2}
$$

Now we do the outer integral

$$
\int_{1}^{2}\left[\int_{-1}^{1}\left(x+y^{2}\right) d x\right] d y=\int_{1}^{2} 2 y^{2} d y=\left.\frac{2 y^{3}}{3}\right|_{1} ^{2}=\frac{2 \cdot 2^{3}}{3}-\frac{2 \cdot 1^{3}}{3}=\frac{16}{3}-\frac{2}{3}=\frac{16}{3}-\frac{2}{3}=\frac{14}{3} .
$$

Ans.: $\frac{14}{3}$.
2. Calculate the double integral

$$
\begin{gathered}
\iint_{R} \frac{x^{2} y}{x^{3}+1} d A \\
R=\{(x, y) \mid 0 \leq x \leq 1,-1 \leq y \leq 1\} .
\end{gathered}
$$

Sol.: Making it into an iterated integral we have

$$
\int_{0}^{1} \int_{-1}^{1} \frac{x^{2} y}{x^{3}+1} d y d x
$$

This integrand has the property that it is separable i.e. a product of a function of x-alone (namely $x^{2} /\left(x^{3}+1\right)$) and a function of y-alone (namely y), so it is legitimate to use the shortcut:

$$
\left(\int_{0}^{1} \frac{x^{2}}{x^{3}+1} d x\right)\left(\int_{-1}^{1} y d y\right)
$$

Since the second integral is obviously 0 , we don't even have to bother to compute the first integral, since everything times zero, is 0 (0 kills everything, and if I know that you are going to die, why bother getting to know you). The answer is 0 .

