Solutions to the "QUIZ" for Lecture 10

1. Find the local maximum and minimum point(s), the local maximum and minimum values, and saddle point(s) of the function

$$
f(x, y)=12 x^{2}-4 x^{3}+6 y^{2}+12 x y
$$

Sol. First compute the first partial derivatives:

$$
f_{x}=24 x-12 x^{2}+12 y \quad, \quad f_{y}=12 y+12 x
$$

and for future reference, the second-order (partial) derivaties:

$$
f_{x x}=24-24 x \quad, \quad f_{x y}=12 \quad, \quad f_{y y}=12
$$

To find the critical points, we set both f_{x} and f_{y} to 0 and solve the system of two equations and two unknwons (x and y).

$$
24 x-12 x^{2}+12 y=0 \quad, \quad 12 y+12 x=0
$$

Since the second one is simpler, let's treat it first, getting $y=-x$. Plugging-in $y=-x$ into the first equation gives:

$$
24 x-12 x^{2}+12(-x)=0
$$

that simplifies to

$$
12 x-12 x^{2}=0
$$

Factoring, we get

$$
12 x(1-x)=0
$$

that yields two solutions $x=0$ and $x=1$ for the x-coordinate. Since $y=-x$, if $x=0$ then $y=-0=0$ yielding the point $(0,0)$, and if $x=1, y=-1$, yielding the point $(1,-1)$. So the critical points are $(0,0)$ and $(1,-1)$.

For each of them, we have to determine whether they are local max., local min. or saddle points.
For the candidate point $(0,0)$, plugging-in $x=0, y=0$ into $f_{x x}, f_{x y}, f_{y y}$ yields:

$$
f_{x x}=24 \quad, \quad f_{x y}=12 \quad, \quad f_{y y}=12
$$

The discriminant $D=f_{x x} f_{y y}-f_{x y}^{2}$ equals, in this case, $24 \cdot 12-12^{2}=144$, and since $f_{x x}>0$ it follows that $(0,0)$ is a local min (remember that if $f_{x x}>0$ then it is a local min, while of $f_{x x}<0$ then it is a local max.) The local min. value is $f(0,0)=0$.

Now let's investigate the other candidate point $(1,-1)$. For that point

$$
f_{x x}=0 \quad, \quad f_{x y}=12 \quad, \quad f_{y y}=12
$$

and $D=0 \cdot 12-12^{2}=-144$. Since $D<0$, it follows that $(1,-1)$ is a saddle point.
Ans.: Local max: None; Local min value is 0 located at the local min point (0,0); Saddle point: $(1,-1)$.

Comments: Unfortunately, only about $\% 30$ of the students got it completely correct, but many students followed the method correctly, but sooner or later messed up the algebra. Some people "almost" got it perfectly, but said that $(0,0)$ is a local max rather than the correct answer that it is a local min. Remember that if $f_{x x}$ is positive then it is a local min and vice versa.

Some people need to brush up on their algebra skills. Some people solved $12 x(1-x)=0$ and only got the solution $x=1$. Make sure you find all solutions.

