Solutions to the "QUIZ" for Lecture 23

1. Determine whether or not the vector field is conservative. If it is, find a function f such that $\mathbf{F}=\nabla f$.

$$
\mathbf{F}(x, y, z)=\left(3 x^{2} y^{3} z^{3}+y z\right) \mathbf{i}+\left(3 x^{3} y^{2} z^{3}+x z\right) \mathbf{j}+\left(3 x^{3} y^{3} z^{2}+x y\right) \mathbf{k}
$$

Sol.: Here:
$P=3 x^{2} y^{3} z^{3}+y z, Q=3 x^{3} y^{2} z^{3}+x z, R=3 x^{3} y^{3} z^{2}+x y$.
We have:
$\frac{\partial P}{\partial y}=9 x^{2} y^{2} z^{3}+z \quad, \quad \frac{\partial Q}{\partial x}=9 x^{2} y^{2} z^{3}+z \quad$,
these are equal.
$\frac{\partial P}{\partial z}=9 x^{2} y^{3} z^{2}+y \quad, \quad \frac{\partial R}{\partial x}=9 x^{2} y^{3} z^{2}+y \quad$,
these are equal.
$\frac{\partial Q}{\partial z}=9 x^{3} y^{2} z^{2}+x \quad, \quad \frac{\partial R}{\partial y}=9 x^{3} y^{2} z^{2}+x \quad$,
these are equal.
So \mathbf{F} is indeed conservative.
We now need to find a function $f(x, y, z)$ such that

$$
\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\langle P, Q, R\rangle .
$$

Since $\frac{\partial f}{\partial x}=P$,

$$
f(x, y, z)=\int\left(3 x^{2} y^{3} z^{3}+y z\right) d x=x^{3} y^{3} z^{3}+x y z+g(y, z)
$$

where $g(y, z)$ is yet-to-be-determined. Using $\frac{\partial f}{\partial y}=Q$,

$$
3 x^{3} y^{2} z^{3}+x z+\frac{\partial g}{\partial y}=3 x^{3} y^{2} z^{3}+x z
$$

giving

$$
\frac{\partial g}{\partial y}=0
$$

So

$$
g(y, z)=\int 0 d y=0+h(z)
$$

where $h(z)$ is yet-to-be-determined. Going back above:

$$
f(x, y, z)=x^{3} y^{3} z^{3}+x y z+h(z)
$$

Using $\frac{\partial f}{\partial z}=R$, we get:

$$
3 x^{3} y^{3} z^{2}+x y+h^{\prime}(z)=3 x^{3} y^{3} z^{2}+x y
$$

giving $h^{\prime}(z)=0$ so $h(z)=C$ and we have

$$
f(x, y, z)=x^{3} y^{3} z^{3}+x y z+C
$$

but we can forget about the C (we were asked to find a potential function, not all of them), so
Ans. to second part: $f(x, y, z)=x^{3} y^{3} z^{3}+x y z$.
2. Evalute

$$
\int_{C} 5 y d x+10 x d y
$$

where C is the closed curve consisting of the boundary of the rectangle

$$
\{(x, y) \mid 0 \leq x \leq 1 \quad, \quad 0 \leq y \leq 1\}
$$

Sol.: We are supposed to use Green's Theorem.

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Since no orientation is mentioned we take the default one of positive (counter-clockwise).
In this problem $P=5 y$ and $Q=10 x$, so we have

$$
\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=10-5=5
$$

and the vector-field line-integral that we have to compute equals:

$$
\iint_{D} 5 d A=5 \iint_{D} 1 d A=5 \operatorname{Area}(D)
$$

(since an area integral with the integrand being 1 equals the area). By elementary-school geometry, the area of D is $1 \cdot 1=1$, so we have:

Ans.: 5 (type number).

