NAME: (print!) _____

Section: ____ E-Mail address: _____

MATH 251 (22,23,24) [Fall 2020], Dr. Z. , Makeup for Exam 1, Sunday, Oct. 25, 2020, 9:00-11:00am

WRITE YOUR FINAL ANSWERS BELOW

1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		

Types: Number, Function of *variable*(s), 2D vector of numbers, 3D vector of numbers, 2D vector of functions, 3D vector of functions, equation of a plane, parametric equation of a line, equation of a line, equation of a surface, equation of a line, DNE (does not exist).

Sign the following declaration:

I Hereby declare that all the work was done by myself. I was allowed to use Maple, calculators, the book, and all the material in the web-page of this class but **not** other resources on the internet.

I only spent (at most) 90 minutes on doing the exam. The last 30 minutes were spent in checking and double-checking the answers.

I also understand that I may be subject to a random short chat to verify that I actually did it all by myself.

Signed:

1. (10 pts.) Find a parametric representation, in terms of the parameter, t, of the line of intersection of the planes y = 0 and z = 0. What is the usual name for that line?

The **type** of the answers is:

2. (10 points) Use any method to find $\frac{\partial^2 h}{\partial r^2}$ at (q, r) = (1, 1) where $h(u, v) = u^5 v^6$, $u = q^2 r$, $v = q r^2$

The \mathbf{type} of the answer is:

3. (10 points) Find the point on the line y = x + 6 (in the *xy*-plane) where the rate of change of the function $f(x, y) = x^2 + y^2$ in the direction < 1, 1 > is zero.

The \mathbf{type} of the answer is:

4. (10 points) Find an equation of the tangent plane to the following surface at the given point

$$z = x^2 + y^3$$
 , $(1, 2, 9)$.

The **type** of the answer is:

5. (10 points) Compute $f_{xyy}(1,1)$ (aka $\frac{\partial^3 f}{\partial x \partial^2 y}(1,1)$), if $f(x,y) = \ln(x^2 + y)$.

The **type** of the answer is:

6. (10 points) Use Linearization to approximate $\sqrt{(3.001)^2 + (3.999)^2}$. Part of the challenge is to find the appropriate function f(x, y) and the appropriate 'nice' point (x_0, y_0) .

The \mathbf{type} of the answer is:

7. (10 points) Decide whether the following limit exists. If it does find it. If it does not **Explain** why not? m + 2m + 2r = 6

$$\lim_{(x,y,z)\to(1,1,1)} \frac{x+2y+3z-6}{3x+2y+z-6}$$

Hint: To prove that a limit **exists** at a designated point you first try to plug it in. If there are no issues you are done, and the value is the limit. Failing this, you try to use **algebra** to simplify and then plug it in, if possible. Failing this you try to prove that it does **not** exist. One way of doing it is to pick any two **different** lines through the point in question and show that if you approach the designated point via these lines you get **different** limits (in the sense of single-variable calculus).

8. (10 points) Find the minimum location(s) (i.e the point(s) where the function is the smallest) of the function

$$f(x, y, z) = x + 2y - z$$

in the **closed pyramid** whose vertices are

$$(1,1,0)$$
 , $(-1,1,0)$, $(1,-1,0)$, $(-1,-1,0)$, $(0,0,1)$

The **type** of the answer(s) is:

9. (10 points) A certain particle of mass 2 kilograms has position function, expressed in meters, where t is time, expressed in seconds,

$$\mathbf{r}(t) = \langle e^t, 2\cos t, 2\cos t \rangle \quad ,$$

(i) Find the **magnitude** of the force acting on it at time t = 0. Explain!

(ii) Find the **unit direction** of that force.

Reminder from physics: F = ma, i.e. the force equals the mass times the acceleration.

The types of the answers are (i)		(ii)	
ans. (i) magnitude :	Newtons	; (ii) unit direction:	

10. (10 points) A certain function f(x, y, z) depends on three variables called x, y and z. At a certain time the rate of change of this function with respect to time happens to be 140. It is also known, that at that same time

- The rate of change of f(x, y, z) with respect to x is 1
- The rate of change of f(x, y, z) with respect to y is 2
- The rate of change of f(x, y, z) with respect to z is 3

• The rate of change of y with respect to time is **two times** The rate of change of x with respect to time.

• The rate of change of z with respect to time is **three times** The rate of change of x with respect to time.

What is the rate of change of x with respect to time at that time?

The **type** of the answer is: