MATH 251 (22,23,24), Dr. Z. Second Chance Club for Exam 2 Worksheet

Due Friday, Dec. 13, 2020, 8:00 pm. Email an attachment called scc2FirstLast.pdf to DrZcalc3@gmail.com Subject: scc2

Make sure that you have the posted solutions:
http://www.math.rutgers.edu/~zeilberg/calc3NNN/mt2S.pdf
and understand each problem.
In this worksheet, you are supposed to state what was your error for each of the exam questions (if you made an error) and say how to avoid it in the future. Then, regardless of whether you got it right or wrong do the similar problems given.

Exam Problem 1. (10 pts.) Compute the line integral

$$
\int_{C} y z d x+(x z+z) d y+(x y+y+1) d z
$$

over the path

$$
\mathbf{r}(t)=\left\langle e^{t^{3}}, t^{2} e^{t^{4}}, t e^{t^{7}}\right\rangle \quad, \quad 0 \leq t \leq 1 \quad . \quad \text { Curl }=0
$$

Explain!

Here is what I did wrong (if applicable):
Problem 1a. Compute the line integral Curl $\neq 0$

$$
\begin{aligned}
& \text { the line integral Curl } \neq 0 \\
& \begin{aligned}
\int_{C} x e^{r y z} d x+y e^{r y y} d y+z e^{r y z} d z & =\int_{0}^{1} t e^{3} d t+t^{2} e^{3}(2) d d t+t^{3} e^{t^{3}}\left(3 t^{2}\right) d t \\
& =\int^{1} t^{3}\left(t+2 t^{3}-t^{3}+3 t^{5}\right) d t
\end{aligned}
\end{aligned}
$$

over the path

$$
\begin{aligned}
& e^{x y z}=e^{t^{3}} \\
& \mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle
\end{aligned} \quad=\int_{0}^{1} e^{t^{3}}\left(t+2 t^{3}+3 t^{5}\right) d t
$$

Explain!

$$
\begin{aligned}
& v^{\prime}(t)=\left\langle 1,2 t, 3 t^{2}\right\rangle \\
& \int_{C} \frac{\left(4 x^{3} y^{2}+1\right) d x+\left(2 x^{4} y+1\right) d y}{f_{n}} f_{y} \\
& \text { Curl }=0 \\
& =f(b)-f(a) \\
& =1+\varnothing-\varnothing \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
\text { Problem Ib. Compute the line integral } & \text { Curl }=0 \\
\int_{C}^{\left(4 x^{3} y^{2}+1\right) d x+\left(2 x^{4} y+1\right) d y} f_{x} f y & =f(b)-f(a) \\
& =1+\ell-\varnothing \\
\int f_{\imath}=F \quad f=x^{4} y^{2}+x+g(y) & =1
\end{aligned}
$$

$$
\begin{aligned}
& f_{y}=2 n^{4} y+g^{\prime}(y)=2 x^{4} y+1 \\
& \begin{array}{l}
g^{\prime}(y)=1 \quad g(y)=\int g^{\prime}(y) \\
\mathbf{r}(t)=\left\langle\sin ^{2}+t^{2}, \cos t^{2}\right\rangle, 0 \leq t \leq \sqrt{\pi / 2} .
\end{array} \\
& \text { Explain! } \\
& =\sin ^{4}\left(t^{2}\right) \cos ^{2}\left(t^{2}\right)+\sin \left(t^{2}\right)+C \\
& f(0)=c \quad f(\sqrt{\pi / 2})=1+c
\end{aligned}
$$

Exam Problem 2. (10 points) By changing the order of integration, if necessary, evaluate the double-integral

$$
\int_{0}^{5} \int_{(y / 5)^{1 / 3}}^{1} \sin x^{4} d x d y
$$

Here is what I did wrong (if applicable):
Problem aa:
Change the order of integration
Done in the end

$$
\int_{0}^{1} \int_{0}^{e^{x}} f(x, y) d y d x
$$

Problem 2b:

Change the order of integration

$$
\int_{0}^{\pi} \int_{0}^{\sin x} f(x, y) d y d x
$$

Problem 2c:

Change the order of integration

$$
\int_{0}^{1} \int_{e^{y}}^{e} f(x, y) d x d y
$$

Done
Exam Problem p 3. (10 points) Find the equation of the tangent plane at the point $(1,1,1)$ to the surface given parametrically by
$x(u, v)=u^{3} v \quad, \quad y(u, x)=u v \quad, \quad z(u, v)=u v^{3} \quad, \quad-\infty<u<\infty \quad, \quad-\infty<v<\infty$.

Express you answer in explicit form, i.e in the format $z=a x+b y+c$.
Here is what I did wrong (if applicable):

Problem Ba. Find the equation of the tangent plane at the point $(1,2,4)$ to the surface given parametrically by
$x(u, v)=u^{2} \quad, \quad y(u, x)=u v \quad, \quad z(u, v)=v^{2} \quad, \quad-\infty<u<\infty \quad, \quad-\infty<v<\infty$.

Express you answer in explicit form, i.e in the format $z=a x+b y+c$.

Problem Sb. Find the equation of the tangent plane at the point $(-1,-1,2)$ to the surface given parametrically by
$x(u, v)=u^{3} \quad, \quad y(u, x)=v^{3} \quad, \quad z(u, v)=-2 u v \quad, \quad-\infty<u<\infty \quad, \quad-\infty<v<\infty$.
Express you answer in explicit form, i.e in the format $z=a x+b y+c$.

Exam Problem 4. Let $f(x, y, z)=e^{\cos x^{2}+\sin x y z+\cos x z}$, and let

$$
\mathbf{F}=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

Let C be the curve

$$
F=\nabla f
$$

$$
r(t)=\langle\cos t, t, \sin t\rangle \quad, \quad 0 \leq t \leq 2 \pi
$$

Find the value of the line-integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Explain! Just giving the answer will give you no credit.

$$
\begin{aligned}
r(0) & =\langle 1,0,0\rangle \\
r(2 \pi) & =\langle 1,0,0\rangle \\
& =0
\end{aligned}
$$

Here is what I did wrong (if applicable):

Problem 4a Let $f(x, y, z)=\sin \left(x+y^{2}+z^{3}\right)$, and let

$$
\begin{aligned}
\mathbf{F} & =\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \\
\mathbf{F} & =\nabla f \quad \therefore \text { conservative }
\end{aligned}
$$

Let C be the curve

$$
r(t)=\left\langle t, t^{2}, t^{3}\right\rangle \quad, \quad 0 \leq t \leq 3
$$

$$
\begin{aligned}
& r(0)=\langle 0,0,0\rangle \\
& r(3)=\langle 3,9,27\rangle
\end{aligned}
$$

Find the value of the line-integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

$$
=\sin (19695)
$$

Explain! Just giving the answer will give you no credit.

Problem 4b Let $f(x, y)=e^{\cos x+3 \sin y}$, and let

$$
\mathbf{F}=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

$$
\begin{aligned}
& r(0)=\langle 0,1\rangle \\
& r(\pi)=\langle 0,1\rangle
\end{aligned}
$$

Let C be the curve

$$
r(t)=\langle\sin 2 t, \cos t\rangle \quad, \quad 0 \leq t \leq \pi
$$

Find the value of the line-integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Explain! Just giving the answer will give you no credit.

Exam Problem 5. (10 points) Evaluate the triple integral

$$
\int_{R}\left(x^{2}+y^{2}+z^{2}\right)^{3} d x d y d z
$$

where R is the region in 3D space given by

$$
\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1 \quad, \quad x, y, z \geq 0\right\}
$$

Here is what I did wrong (if applicable):

Problem Ea Evaluate the triple integral

$$
\int_{R}(x+y)\left(x^{2}+y^{2}+z^{2}\right)^{2} d x d y d z
$$

where R is the region in 3D space given by

$$
\rho^{4} \cdot \rho \sin \phi(\cos \theta+\sin \theta) \rho^{4} \sin \phi d \rho d \phi d \theta
$$

$$
\begin{aligned}
& \iiint S^{6}\left(s^{2} \sin \phi\right) d s d d d \theta \\
& \rho^{6} \text { sind } \rho=0 . .1 \\
& \phi=0 . . \pi / 2 \\
& \theta=0 . \pi / 2
\end{aligned}
$$

$$
\begin{aligned}
& \rho=0 . .1 \quad=\rho^{7} \sin ^{2} \phi(\sin \theta+\cos \theta) \\
& \phi-\pi / 2 . . \pi \\
& \theta=0 . . \frac{3 \pi}{2}
\end{aligned}
$$

Problem 5b Evaluate the triple integral

$$
\begin{aligned}
& \rho=0.1 \\
& \phi=\pi / 2 \ldots \pi \quad S^{\int} \int\left(x x^{2}+y^{2}+z^{2}+2 d x d y d z\right. \\
& \rho^{4} \cos \phi \sin \phi d s d \phi d \theta
\end{aligned}
$$

where R is the region in 3D space given by $\theta=\pi . .2 \pi$

$$
\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1 \quad, \quad y<0\right\}
$$

$$
\int_{R}(z-x) d x d y d z
$$

$$
\begin{aligned}
& \rho=0 . .2 \sqrt{2} \\
& \phi=0 . . \pi \\
& \theta=0 . .21
\end{aligned}
$$

where R is the region in 3D space given by

$$
\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 8\right\}
$$

Exam Problem 6. Evaluate the double integral

$$
\int_{-3}^{0} \int_{0}^{\sqrt{9-x^{2}}}\left(x^{2}+y^{2}\right)^{2} d y d x
$$

Here is what I did wrong (if applicable):

Problem 6a Convert the integral to polar coordinates, do not evaluate.

Problem Wb Convert the integral to polar coordinates, do not evaluate.

$$
\int_{0}^{4} \int_{-\sqrt{16-x^{2}}}^{0}\left(x^{2}+y\right) d y d x
$$

Problem 6c Convert the integral to polar coordinates, do not evaluate.

$$
\int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \int_{x}^{\sqrt{1-x^{2}}}\left(x^{3}+y^{2}\right) d y d x \text { dort knows }
$$

Exam Problem 7. (10 points altogether) Decide whether the following limits exist. If it does find them. If it does not Explain why not?
(a) (2 points) $\lim _{(x, y) \rightarrow(\pi / 2, \pi / 2)} \frac{\cos x+\sin x}{x+y}$,
(b) (2 points) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x-y}$,
(c) (2 points) $\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{x^{2}-y^{2}}$,
(d) (4 points) $\lim _{(x, y) \rightarrow(1,1)} \frac{x+y-2}{2 x+y-3}$,

Here is what I did wrong (if applicable):
Dom
Problem 7a: Decide whether the following limit exists. If it does, find it, if not, explain!

$$
\begin{aligned}
& \underset{\substack{(x, y) \\
\lim _{x \rightarrow 1}(1,3)} \frac{x-1}{\lim _{1}} \frac{x-3}{y+m(x, x) x>3}}{ } \frac{1}{m} \\
& y=3+m(x-1) \\
& \text { DeE }
\end{aligned}
$$

Problem 7b: Decide whether the following limit exists. If it does, find it, if not, explain!

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x+y+2 z}{2 x+y+z} \lim _{\boldsymbol{n} \rightarrow 0} \frac{n+\mathbf{C} n+2 m n}{2 n+\mathbf{C n}+m n}=\frac{1+C+2 m}{2+C+m}
$$

Exam Problem 8. Compute the line integral $\int_{C} f d s$ where

$$
f(x, y, z)=x y z
$$

$n=t_{\text {and }} C$ is the line segment starting at $(0,0,0)$ and ending at $(1,2,-3)$
$y=2 t$

$t=1$
$z=-3 t$

Here is what I did wrong (if applicable):
Problem Ba Compute the line integral $\int_{C} f d s$ where

$$
\begin{aligned}
& \text { e integral } \int_{C} f d s \text { where } \\
& \left.f(x, y, z)=x y^{2}+y z^{2}+z \quad f(t)=\left(2 t^{3}-t\right) \sqrt{3}\right)
\end{aligned}
$$

and C is the line segment starting at $(0,0,0)$ and ending at $(1,1,-1)$

Problem Bb Compute the line integral $\int_{C} f d s$ where

$$
f(x, y)=x+y
$$

and C is the upper circle $\left\{(x, y): x^{2}+y^{2}=1, y>0\right\}$.

Done

Exam Problem 9. Compute the vector-field surface integral $\iint_{S} \mathbf{F} . d \mathbf{S}$ if \mathbf{F} is

$$
\mathbf{F}=\langle z, z, x\rangle,
$$

and S is the oriented surface

$$
z=9-x^{2}-y^{2} \quad, x \geq 0, y \geq 0, z \geq 0
$$

with downward pointing normal.

Here is what I did wrong (if applicable):

Problem 9a Compute the vector-field surface integral $\iint_{S} \mathbf{F} . d \mathbf{S}$ if \mathbf{F} is

$$
\mathbf{F}=\langle x+z, y+z,-x\rangle \quad, \quad \iint\left(-p \frac{d g}{d n}-Q \frac{d g}{d y}+R\right) d A
$$

and S is the oriented surface

$$
z=9-x^{2}-y^{2} \quad, x<0, y<0, z \geq 0
$$

with upward pointing normal.

$$
\begin{aligned}
& 2 x(x+z)+(y+z)(2 y)-x \\
& \int_{0}^{-3}-\sqrt{9-x^{2}}\left[2 x\left(9-x^{2}-y^{2}+x\right)+\left(y+9-x^{2}-y^{2}+y\right)(2 y)\right.
\end{aligned}
$$

Problem 9b Compute the vector-field surface integral $\iint_{S} \mathbf{F} . d \mathbf{S}$ if \mathbf{F} is

$$
\mathbf{F}=\langle x+z, y+z,-x\rangle,
$$

and S is the oriented surface

$$
=-\int_{0}^{1} \int_{0}^{1} d y d x
$$

$$
z=9-x^{2}-y^{2} \quad, 0<x<1,0<y<1, z \geq 0
$$

with downward pointing normal.

Exam Problem 10. Find the point on the plane $x+2 y+3 z=18$ where the function $f(x, y, z)=x y z$ is as large as possible.

Here is what I did wrong (if applicable):

Problem 10a Find the maximum value of the function $f(x, y, z)=x y z$ on the plane $2 x+y+z=4$

Problem 10b Find the point on the plane $2 x+y+z=4$ where $f(x, y, z)=x y^{2} z$ is as large as possible. (You can use Maple)

$$
\nabla f=\langle y z, x z, x y\rangle
$$

$$
\begin{aligned}
& \quad y z=\lambda 2 \\
& \frac{\lambda^{2}}{x^{2}}=2 x \\
& \lambda=2 x^{2} \\
& x=\sqrt{\frac{\lambda}{2}} \\
& = \pm \frac{2}{3} .
\end{aligned}
$$

$$
\nabla g\langle 2,1,1\rangle
$$

$$
\begin{array}{ll}
x z=\lambda & x y=\lambda \\
z=\frac{\lambda}{x} & y=\frac{\lambda}{x}
\end{array}
$$

$$
\begin{aligned}
& z=2 x \\
& z=2 \sqrt{\frac{\lambda}{2}}
\end{aligned}
$$

$$
\begin{gathered}
2 \sqrt{\frac{\lambda}{2}}+2 \sqrt{\frac{\lambda}{2}}+2 \sqrt{\frac{\lambda}{2}}=4 \\
3 \sqrt{\frac{\lambda}{2}}=2 \\
\frac{\lambda}{2}=\frac{4}{9} \\
\lambda= \pm \frac{8}{9} \\
f(n, y z)=\frac{32}{27}
\end{gathered}
$$

Exam Problem 1. (10 pts.) Compute the line integral

$$
\begin{gathered}
\int_{C} y z d x+(x z+z) d y+(x y+y+1) d z \\
f_{\boldsymbol{n}} \quad \boldsymbol{f}_{\boldsymbol{y}} \\
\mathbf{r}(t)=\left\langle e^{t^{3}}, t^{2} e^{t^{4}}, t e^{t^{7}}\right\rangle, \quad 0 \leq t \leq 1
\end{gathered}
$$

over the path

Explain!

Here is what I did wrong (if applicable):

Problem 1a. Compute the line integral

$$
\int_{C} x e^{x y z} d x+y e^{x y z} d y+z e^{x y z} d z
$$

over the path

$$
\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle \quad, \quad 0 \leq t \leq 1
$$

Explain!
Problem 1

$$
\operatorname{surl}(F)=0
$$

$$
\begin{aligned}
f(x, y, z) & =\int f_{x} \\
& =\int y z d x \\
f(x, y, z) & =x y z+g(y, z) \\
f_{y}=x z & +g_{y}(y, z)
\end{aligned}
$$

$$
\begin{aligned}
& x \not x+z=x z+g_{y}(y, z) \\
& g_{y}(y, z)= z \\
& g(y, z)= \int g_{y}(y, z)= \\
&=y z \\
& g(y, z)=y z+g(z) \\
&=y z+y^{\prime}(x, y, z)=x y z+y z+g(z) \\
& f_{z}=x y+y+g^{\prime}(z)
\end{aligned}
$$

Problem Ra:

Change the order of integration

Problem 2b:
Change the order of integration

Problem Rc:
Change the order of integration

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{\sin x} f(x, y) d y d x \\
& \int_{0}^{1} \int_{\sin ^{4}(y)}^{3} \sin ^{4} d x d y \\
& \int_{0}^{1} \int_{e^{y}}^{e} f(x, y) d x d y \int_{0}^{e} \int_{0}^{\ln (x)} d y d x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{e^{e}} f(x, y) d y d x \\
& \int_{0}^{e} \int_{\ln (y)}^{1} d x d y
\end{aligned}
$$

Problem Ba. Find the equation of the tangent plane at the point $(1,2,4)$ to the surface given parametrically by

$$
x(u, v)=u^{2} \quad, \quad y(u, x)=u v \quad, \quad z(u, v)=v^{2} \quad, \quad-\infty<u<\infty \quad, \quad-\infty<v<\infty
$$

Express you answer in explicit form, i.e in the format $z=a x+b y+c$.

Problem Sb. Find the equation of the tangent plane at the point $(-1,-1,2)$ to the surface given parametrically by

$$
x(u, v)=u^{3} \quad, \quad y(u, x)=v^{3} \quad, \quad z(u, v)=-2 u v \quad, \quad-\infty<u<\infty \quad, \quad-\infty<v<\infty
$$

Express you answer in explicit form, i.e in the format $z=a x+b y+c$.
$(3 a)$
$1=u^{2}$ $u= \pm l$ $v=4$

$$
\begin{gathered}
r_{\mu}=\langle 2 u, w, 0\rangle=\langle 2,2,0\rangle \\
r_{v}=\langle 0, u, 2 v\rangle=\langle 0,1,4\rangle \\
r_{u} \times r_{v}-\left|\begin{array}{lll}
i & j & k \\
2 & 2 & 0 \\
0 & 1 & 4
\end{array}\right| \\
\quad 8 i-8 j+2 k, \\
2(z-4)+8(y-2)+8(n-1)=0 \\
2 z+8 y+8 x=8+16+8 \\
z+4 y+4 n=\frac{32}{2}=16 \\
z=-4 y-4 x+16
\end{gathered}
$$

