name: (print) Prathik Cola Section: \qquad

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q9FirstLast.pdf) ASAP BUT NO LATER THAN Oct. 5, 8:00 pm

1. Find $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial s}$ as functions of r and s, if

$$
f(x, y)=x^{2}+2 x y^{2}+2 y^{3},
$$

and the variables are related by $x=r+2 s$ and $y=3 r+2 s$. You do not need to simplify!

$$
\begin{array}{lll}
f(x, y)=x^{2}+2 x y^{2}+2 y^{3} & x=r+2 s, y=3 r+2 s & \frac{\partial f}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}=\left(2 x+2 y^{2}\right)(1)+\left(4 x y+6 y^{2}\right)(3) \\
\frac{\partial f}{\partial x}=2 x+2 y^{2} & \frac{\partial x}{\partial r}=1 \quad \frac{\partial y}{\partial r}=3 & \frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}=\left(2 x+2 y^{2}\right)(2)+\left(4 x y+6 y^{2}\right)(2) \\
\frac{\partial f}{\partial s}=2 & \frac{\partial y}{\partial s}=2 & \\
\frac{\partial f}{\partial r}=\left(2 x+2 y^{2}\right)(1)+\left(4 x y+6 y^{2}\right)(3) & \frac{\partial f}{\partial s}=\left(2 x+2 y^{2}\right)(2)+\left(4 x y+6 y^{2}\right)(2) \\
\frac{\partial f}{\partial r}=2 x+2 y^{2}+12 x y+18 y^{2} & \frac{\partial f}{\partial s}=4 x+4 y^{2}+8 x y+12 y^{2} \\
\frac{\partial f}{\partial r}=20 y^{2}+12 x y+2 x & \frac{\partial f}{\partial s}=16 y^{2}+8 x y+4 x
\end{array}
$$

$$
\begin{aligned}
& \frac{\partial f}{\partial r}=20 y^{2}+12 x y+2 x \\
& \frac{\partial f}{\partial s}=16 y^{2}+8 x y+4 x
\end{aligned}
$$

2. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
x^{2}+y^{2}+z^{2}=5 x y z+1
$$

Solving for $\frac{\partial z}{\partial x} \rightarrow \frac{d}{d x}\left(x^{2}+y^{2}+{ }^{2}=5 x y z+1\right)$

$$
\begin{aligned}
& 2 x+2 z \frac{\partial z}{\partial x}=5 x y \frac{\partial z}{\partial x} \\
& 2 x=5 x y \frac{\partial z}{\partial x}-2 z \frac{\partial z}{\partial x} \\
& 2 x=\frac{\partial z}{\partial x}(5 x y-2 z) \\
& \frac{\partial z}{\partial x}=\frac{2 x}{5 x y-2 z}
\end{aligned}
$$

$$
2 y+2 z \frac{\partial z}{\partial y}=5 x y \frac{\partial z}{\partial y}
$$

$$
2 y=5 x y \frac{\partial z}{\partial y}-2 z \frac{\partial z}{\partial y}
$$

$$
\frac{\partial z}{\partial y}=\frac{2 y}{5 x y-2 z}
$$

