"QUIZ" for Lecture 8

NAME: (print!)
Yongshan Li Section: 23

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: qXFirstLast.pdf) ASAP BUT NO LATER THAN Oct. 1, 2020, 8:00 pm

1. Find the directional derivative of the function $f(x, y, z)=x y^{\wedge} 2 z^{\wedge} 3$ at the point $(2,1,1)$ in the direction $<2,-1,-1>$.

$$
\begin{aligned}
& \text { 1. } \begin{array}{l}
\left.\nabla f=2 y, 3 z^{2}\right\rangle\left\langle y^{2} z^{3}, x z^{3} 2 y, x y^{2} 3 z^{2}\right\rangle \\
|z,-1,-1|=\sqrt{6} \\
u=\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}} \\
\nabla f(2,1,1)=\langle 1,4,6\rangle \\
\text { Directional Derivative }:\left\langle\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right\rangle\langle 1,4,6\rangle \\
=
\end{array} \begin{array}{l}
\left.=\frac{2}{\sqrt{6}},-\frac{4}{\sqrt{6}},-\frac{6}{\sqrt{6}}\right\rangle
\end{array}
\end{aligned}
$$

2. Find the maximum rate of change of $f(x, y)=x^{\wedge} 2+y^{\wedge} 3$ at the point $(2,1)$ and the direction in which is occurs.

$$
\begin{aligned}
& \text { 2. } \nabla f=\left\langle 2 x, 3 y^{2}\right\rangle \\
& \nabla f(2,1)=\langle 4,3\rangle \\
& 0|4,3|=5 \\
& u=\left\langle\frac{4}{5}, \frac{3}{5}\right\rangle
\end{aligned}
$$

The maximum rate of change is 5 on the direction $\left\langle\frac{4}{5}, \frac{3}{5}\right\rangle$

