"QUIZ" for Lecture 8
NAME: (print!) Irina Mukhametzhanora Section: 24
E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: qXFirstLast.pdf) ASAP BUT NO LATER THAN Oct. 1, 2020, 8:00pm
1. Find the directional derivative of the function $f(x,y,z)=xy^2z^3$ at the point $(2,1,1)$ in the direction $(2,-1,-1)$. The formula for the directional derivative at (x_0,y_0,z_0) is:
Tf(xo, yo, zo). u , when ii is the unit verter of the Lines an. First, we find If:
Of = < fx, fy, fz) = < y223, 2xy23, 3xy222)
Now, we plug in the point (2,1,1) into the gradient: If(2,1,1) = <12.13, 2(2)(1)(1)3, 3(2)(1)2(1)2)=21, 4,6)
Next, we find he unit vector of L2,-1,-17:
Frielly, we find the directional desirative:
2. Find the maximum rate of change of $f(x,y) = x^2 + y^3$ at the point $(2,1)$ and the direction in
which is occurs.
number to f D. rate of change of he function is he
nagnitude of the gradient at not point: Vf = Lfx, by 7 = L2x, 3y2)
$7+(2,1)=(2(2),3(1)^2)=(4,3)$
19 f(2,1) = 142432 = 16+9 = 125 = 5
of Ris direction:
17 point (2,1) De massum rate of change of tex, y) &
5/m De drechon 1/4 3 57

15) in Re drukon (25, 3)