"QUIZ" for Lecture 8

NAME: (print!) \qquad Daniel Gameiro Section: 23

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: qXFirstLast.pdf) ASAP BUT NO LATER THAN Oct. 1, 2020, 8:00 pm

1. Find the directional derivative of the function $f(x, y, z)=x y^{2} z^{3}$ at the point $(2,1,1)$ in the direction $\langle 2,-1,-1\rangle$.

$$
\begin{aligned}
& \nabla f=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle \\
& \nabla f \text { at }(2,1,1)=\langle 1,4,6\rangle \\
& u=\frac{\langle 2,-1,-1\rangle}{\sqrt{6}}=\left\langle\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right\rangle \\
& \left\langle\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right\rangle \cdot\langle 1,4,6\rangle=-\frac{8}{\sqrt{6}}
\end{aligned}
$$

2. Find the maximum rate of change of $f(x, y)=x^{2}+y^{3}$ at the point $(2,1)$ and the direction in which is occurs.

$$
\begin{aligned}
& \nabla f=\left\langle 2 x, 3 y^{2}\right\rangle \\
& \nabla f \text { at }(2,1)=\langle 4,3\rangle \\
& |\nabla f|=5
\end{aligned}
$$

Maximum rate of change is 5 in the direction $\left\langle\frac{4}{5}, \frac{3}{5}\right\rangle$

