NAME: (print!) Niharika Kompella
Section: 23

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q7FirstLast.pdf) ASAP BUT NO LATER THAN Sept. 28, 8:00 pm

1. Compute the partial derivatives with respect to x and y.

$$
z=\ln \left(x^{2}+y^{3}\right)
$$

Wrespect to:

$$
\begin{aligned}
& \frac{x}{z=\ln \left(x^{2}+y^{3}\right)=} \\
& \frac{1}{x^{2}+y^{3}} \cdot \frac{\partial}{\partial x}\left(\operatorname { l n } \left(x^{2}+y\right.\right. \\
& \frac{1}{x^{2}+y^{3}} \cdot 2 x+0 \\
& z^{\prime}=\frac{2 x}{x^{2}+y^{3}}
\end{aligned}
$$

$$
\frac{y}{z}=\ln \left(x^{2}+y^{3}\right)=
$$

2. Find an equation of the tangent plane to the surface at the specified point.

B

$$
z=x^{2}+y^{2}+2 \quad, \quad(1,1,4) .
$$

$$
f(x, y)=x^{2}+y^{2}+2
$$

$$
f_{x}=2 x \rightarrow f(1)=2
$$

$$
\xi
$$

$$
\begin{aligned}
& z-z_{0} \quad f_{x}\left(x_{1} \cdot\left(x-x_{0}\right)+f_{y}(x\right. \\
& =2 \cdot(x-1)+2(y-1)=z
\end{aligned}
$$

$$
f_{y}=2 y+f^{\prime}(1)=2
$$

$$
2 x-2+2 y-2=z
$$

$$
2 x+2 y-z-2=0
$$

