Wenhao Li
 $22,23,24$
 NAME: (print!)
 \qquad
 Section:
 \qquad
 E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q6FirstLast.pdf) ASAP BUT NO LATER THAN Sept. 24, 8:00pm

1. Find the limit if it exists, or show that the limit does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x}{2 x+3 y} .
$$

```
Both top and bottom vanish when we
plug-in (x, y) = (0, 0) so we must go on.
Plug in y=cx
lim(x)->0 2x/2x+3cx
=lim(x)>0 2x/x(2+3c)
=1 im(x)}>>02/2+3
=2/2+3c
The limit does not exist since you
get different limits when you approach the
point (0, 0) on different lines.
```

2. Find the limit if it exists, or show that the limit does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{5}}{x^{2}+y^{2}} .
$$

Both top and bottom vanish when we
plug-in $(x, y)=(0,0)$ so we must go on.
Plug in $y=c x$
$\lim (x) \cdot>0 x^{\wedge} 5 / x^{\wedge} 2+c^{\wedge} 2 x^{\wedge} 2$
$=1$ im($x) \cdot>0 x^{\wedge} 5 / x^{\wedge} 2\left(1+c^{\wedge} 2\right)$
$=1 \mathrm{im}(x) \cdot>0 x^{\wedge} 3 /\left(1+c^{\wedge} 2\right)$
$=0$
: The limit exists and equals 0 .

