"QUIZ" for Lecture 6
name: (print!) Daniel Gameirg Section: 23

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q6FirstLast.pdf) ASAP BUT NO LATER THAN Sept. 24, 8:00 pm

1. Find the limit if it exists, or show that the limit does not exist.

$$
\begin{aligned}
& \text { Plugging in gives } \div \text {, so lets try } y=\angle x \\
& \lim _{x \rightarrow 0} \frac{2 x}{2 x+3 c x}=\lim _{x \rightarrow 0} \frac{2 x}{x(2+3 c)}=\lim _{x \rightarrow 0} \frac{2}{2+3 c} \\
& \text { The limit depends on } C \text {, therefore } \\
& \text { this emit doesn't exist. }
\end{aligned}
$$

2. Find the limit if it exists, or show that the limit does not exist.

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{x^{5}}{x^{2}+y^{2}} . \\
& \text { Plugging in gives } \frac{0}{0} \text {, so lets try } y=c x \\
& \lim _{x \rightarrow 0} \frac{x^{5}}{x^{2}+(c x)^{2}}=\lim _{x \rightarrow 0} \frac{x^{5}}{x^{2}\left(1+c^{2}\right)}=\lim _{x \rightarrow 0} \frac{x^{3}}{1+c^{2}}=0 \\
& \text { There might be a limit, so lets try polar: } \\
& \lim _{r \rightarrow 0} \frac{(r \cos \theta)^{5}}{r^{2}}=\lim _{r \rightarrow 0} \frac{r^{5} \cos ^{5} \theta}{r^{2}}=\lim _{r \rightarrow 0} r^{3} \cos ^{5} \theta=0 \\
& \text { The limit exists and equals } 0 \text {. }
\end{aligned}
$$

