"QUIZ" for Lecture 4

NAME: (print!)	Aavushi Kasera	Section:

E-MAILSCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q4FirstLast.pdf) ASAP BUT NO LATER THAN Sept. 17, 8:00pm

1. Find a parametric equation for the tangent line to the curve with the given parametric equation at the specified point

$$x = \cos t$$
, $y = \sin t$, $z = t^2 + 1$; $(1,0,1)$
 $y' = -\sin t$
 $y' = -\cos t$
 $(x + \sin t) - (y - \cot t)$
 $z' = 2t + 1$
 $+ (z - 2t - 1)$

2. Find
$$\mathbf{r}(t)$$
 if

$$\mathbf{r}'(t) = t\,\mathbf{i} + 2\,\mathbf{j} + (t+1)\,\mathbf{k}$$

and

$$\mathbf{r}(0) = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \quad .$$

$$\int \mathfrak{R}(t)$$

$$t^{2}i + 2tj^{4}t^{2}k + tk + (= \mathfrak{R}(t))$$

$$\mathfrak{R}(0) = C$$

$$\mathfrak{R}(t) = \left(t^{2}+1\right)i + (2t+2)j + \left(t^{2}+1+3\right)k$$