name: (print!) Angelica Armstrong ----------1
Section: 23 E-Mail address: aa2036@scarlatmail.
rutgevs.edu
MATH 251 (04,06,07 ), Dr. Z., Final Exam ,Tue., Dec. 19, 2017, SEC 118, 12:00-3:00pm
WRITE YOUR FINAL ANSWER TO EACH PROBLEM IN THE INDICATED PLACE (right under the question)
Do not write below this line

1. (out of 12)
2. (out of 12)
3. (out of 12)
4. (out of 12)
5. (out of 12)
6. (out of 12)
7. (out of 12)
8. (out of 12)
9. (out of 12)
10. (out of 12)
11. (out of 12)
12. (out of 12)
13. (out of 12)
14. (out of 12)
15. (out of 12)
16. (out of 12)
17. (out of 8 )
tot. (out of 200)

Important note: Unlike Exams 1 and 2, you are not required to state the type of the answer, and there is no credit for stating the type. But if the given answer is the wrong type, you would get 0 points.

Example: Find $f^{\prime}(2)$ if $f(x)=x^{3}$. If you give the answer $3 x^{2}$ instead of 12 , you would get zero points!

Formula that you may (or may not) need
If the surface $S$ is given in explicit notation $z=g(x, y)$, above the region of the $x y$-plane , $D$, then

$$
\begin{gathered}
\iint_{S} \mathbf{F} \cdot d \mathbf{S}= \\
\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A
\end{gathered}
$$

1. (12 points) Compute the line-integral

$$
\int_{C} 7 y d x+3 x d y
$$

where $C$ is the circle $x^{2}+y^{2}=100$ traveled in the clockwise direction.

Ans.:


Greens Theorem


$$
\begin{aligned}
& \text { turn to polar } A=\pi r^{2} \\
& r=10 \quad t=0 . .2 \pi
\end{aligned}
$$

 $-400 \pi$
since clockwise $*$ answer by -1
2. (12 points) Find an equation of the tangent plane to the surface

$$
z=x^{2}+3 x y+y^{2}
$$

at the point $(1,1,5)$.

Ans.:

$$
z=5 x+5 y-15
$$

$$
\begin{aligned}
& \text { check values } \rightarrow 5=1+3+1 \sqrt{ } \\
& z^{\prime} x=2 x+3 y \quad z^{\prime} y=3 x+2 y
\end{aligned}
$$

$$
z-5=2+3(x-1)+3+2(y-1)
$$

$$
\begin{aligned}
& z-5=5(x-1)+5(y-1) \\
& z=5 x-5+5 y-5-5 \rightarrow z=5 x+5 y-15
\end{aligned}
$$

3. (12 points) Find the absolute maximum value and the absolute minimum value of the function $f(x, y)=x^{2} y$ in the region

$$
\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1-x\}
$$

Absolute minimum value:
Absolute maximum value:

$$
\begin{aligned}
& f x=2 x y \quad f y=x^{2} \quad f_{x} x=2 y \quad f_{y y}=0 \quad f_{x y}=2 x \\
& D=2 y \cdot 0-4 x^{2}=-4 x^{2}
\end{aligned}
$$

4. (12 points) Compute $f_{x x y z}(0,0,0)$ (in other words $\left.\left.\frac{\partial^{4}}{\partial x^{2} \partial y \partial z} f(x, y, z)\right|_{x=0, y=0, z=0}\right)$ if

$$
f(x, y, z)=\sin \left(x^{2}+y+z\right)
$$

Ans: $-2 \cos \left(x^{2}+y+2\right)+4 x^{2} \sin \left(x^{2}+y+2\right)$
maple
5. (12 points) Find $\frac{\partial z}{\partial y}$ at the point $(1,1,1)$ if $(x, y, z)$ are related by:

$$
x y+x z+y z+x^{2} y^{2} z^{2}=4
$$

Ans.: -

$$
\begin{aligned}
& x+x \frac{d z}{d y}+z+y \frac{d z}{d y}+x^{2} y \partial z z \frac{d z}{d y}+x^{2} \partial y z^{2}=0 \\
& \frac{d z}{d y}\left(x+y+x^{2} y^{2} \partial z\right)=-x-z-x^{2} \partial y z^{2} \\
& \frac{d z}{d y}=\frac{-1-1-2}{1+1+2}=\frac{-4}{4}=-1
\end{aligned}
$$

6. (12 points) Find an equation for the plane that contains both the line

$$
x=1+t, y=2+t, z=3+t \quad(-\infty<t<\infty)
$$

and the line

$$
\begin{aligned}
& x=-t, y=1+t, z=2+t(-\infty\langle t<x) \\
& L_{1}:\langle 1, \partial, 3\rangle++\langle 1,1,1\rangle \\
& L \partial\langle 0,1,2\rangle+t\langle-1,1,1\rangle \\
& L_{1}(t=0)=\langle 1,2,3\rangle \\
& 1,1=i(1-1)-j(1--1)+k(1--1) \\
& -11,=0,2 \\
& 0(x-1)-2(y-2)+2\langle z-3)=0
\end{aligned}
$$

7. (12 points) A certain particle has acceleration given by

$$
\mathbf{a}(t)=\left\langle-4 \sin 2 t,-4 \cos 2 t, 9 e^{3 t}\right\rangle
$$

If its velocity at $t=0$ is $\langle 2,0,3\rangle$ and its position at $t=0$ is $\langle 0,1,1\rangle$, finds its position at the time $t=\frac{\pi}{4}$.

Ans: $\frac{\sqrt{3}}{2}, \frac{\sqrt{\partial}}{\partial}, e^{3 \pi / 4}$

$$
\begin{aligned}
& \int-4 \sin 2 t,-4 \cos 2 t, 9 e^{3 t} \\
& 2 \cos (2 t),-2 \sin (2 t), 3 e^{3 t}+C \\
& 2,0,3=2 \cos (0),-2 \sin (0), 3 e^{0}+C \\
& \int \partial \cos (2 t),-2 \sin (2 t), 3 e^{3 t} \\
& \sin (2 t), \cos (2 t), e^{3 t}+C \\
& 0,1,1=\sin (0), \cos (0), e^{0}+C \\
& t=\pi / 4=\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, e^{\frac{3 \pi}{4}}
\end{aligned}
$$

8. (12 points) Compute the (scalar-function) line-integral

$$
\int_{C}(x+y+2 z) d s
$$

where the curve $C$ is given by the parametric equation:

$$
\mathbf{r}(t)=\langle t, 2 t, 2 t\rangle \quad, \quad 0 \leq t \leq 1
$$

Ane $15 / 2$

$$
x^{\prime}=+\quad y=2+\quad z=2+\quad x^{\prime}=1 \quad y^{\prime}=2 \quad z^{\prime}=2
$$

$$
\int_{0}^{1} t+\partial t+\partial t \cdot \sqrt{1^{2}+z^{2}+z^{2}} d t
$$

$$
\int_{0} 5+\sqrt{9} \rightarrow \text { maple }
$$

9. (12 points)

If

$$
\lim _{(x, y, z) \rightarrow(1,1,1)} f(x, y, z)=1 \quad, \quad \lim _{(x, y, z) \rightarrow(1,1,1)} g(x, y, z)=2
$$

compute

$$
\lim _{(x, y, z) \rightarrow(1,1,1)} \sin \left(\frac{\pi}{3} f(x, y, z)\right) \cos \left(\frac{\pi}{4} g(x, y, z)\right.
$$

Ans.:

$$
\sin \left(\frac{\pi}{3}\right) \cdot \cos \left(\frac{\pi}{2}\right)=0
$$

10. (12 points) Compute

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

where

$$
\mathbf{F}=\left\langle x^{2}+\sin (y+z), y^{2}+x z^{3}, z^{2}+e^{x y}\right\rangle
$$

and where $S$ is the boundary (consisting of all six faces) of the cube

$$
\{(x, y, z) \mid 0 \leq x, y, z \leq 1\}
$$

with the normal pointing outward.

Ans.:
11. (12 points) By finding a function $f$ such that $\mathbf{F}=\nabla f$, evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the given curve $C$.

$$
\begin{gathered}
\mathbf{F}(x, y, z)=\left\langle 2 e^{2 x+3 y+4 z}, 3 e^{2 x+3 y+4 z}, 4 e^{2 x+3 y+4 z}\right\rangle \\
C: x=t \quad, \quad y=2 t \quad, \quad z=t^{2} \quad, \quad 0 \leq t \leq 1
\end{gathered}
$$

Ans:

$$
\begin{aligned}
& \int \partial e^{2 x+3 y+42} d x=e^{2 x+3 y+42}+g(y, z) \\
& 3 e^{2 x+3 y+42}=3 e^{2 x+3 y+42}+g^{\prime}(y) \quad g^{\prime}(y)=0=g(y) \\
& 4 e^{2 x+3 y+42}=2+e^{2 x+3 y+42}+g^{\prime}(2) \quad g^{\prime}(2)=0=g(2) \\
& f=e^{2 x+3 y+42 \quad} \quad c=+12+t^{2} \quad \text { octal }
\end{aligned}
$$ conservative

$$
f(c(1))=e^{2+6+4}-e^{0+0+0}=e^{12}-1
$$

12. (12 points) Evaluate the line integral

$$
\int_{C} 5 y d x+5 x d y+6 z d z
$$

where $C$ : $x=t^{2}, y=t, z=t^{2}, 0 \leq t \leq 1$.

Ans.: 5
$\int_{0}^{1} 5 t \cdot 2 t+5 t^{2} \cdot 1+6 t^{2} \cdot 2 t$ $\int_{0}^{1} 10 t^{2}+5 t^{2}+12 t^{3}$ maple
13. (12 points) Evaluate

$$
\iiint_{E} \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} d V
$$

where $E$ is the hemisphere

$$
\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 100, z<0\right\}
$$

Ans.:
14. (12 points) Evaluate the quadruple integral

$$
\iiint \int_{E} 360 x d V
$$

where

$$
E=\{(x, y, z, w) \mid 0 \leq w \leq 1,0 \leq z \leq w, 0 \leq y \leq z, 0 \leq x \leq y\}
$$

Ans.: 3

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{w} \int_{0}^{2} \int_{0}^{y} 360 x d V \\
\int_{0}^{y} 360 x=180 x^{2}| |_{0}^{y} \rightarrow 180 y^{2} \\
\int_{0}^{2} 180 y^{2}=\left.60 y^{3}\right|_{0} ^{2} \rightarrow 60 z^{3} \\
\int_{0}^{w} 60 z^{3}=\left.15 z^{4}\right|_{0} ^{w} \rightarrow 15 w^{4} \\
\int_{0}^{1} 15 w^{4}=\left.3 w^{5}\right|_{0} ^{1} \rightarrow 3-0=3
\end{gathered}
$$

15. (12 points) Find the Jacobian of the transformation from $(u, v)$-space to $(x, y)$-space.

$$
x=3 \sin (2 u+v) \quad, \quad y=u+v+\cos (u+v)
$$

at the point $(u, v)=(0,0)$.

Ans.:


$$
\begin{aligned}
& 2 \cdot 3 \cos (2 u+v) \\
& 1-\sin (u+v)
\end{aligned}
$$

$$
\begin{aligned}
& 3 \cos (\partial u+v) \\
& 1-\sin (u+v)
\end{aligned}
$$

$$
=63
$$

$$
=6-3=3
$$

16. (12 points) Find the local maximum and minimum points and saddle point(s) of the function $f(x, y)=x^{3}+y^{2}-6 x y$

Local maximum points(s):
Local minimum points (s): $(6, \backslash)$
saddle points): $(6, \backslash 8)$

$$
f_{x}=3 x^{2}-6 y \quad f_{y}=2 y-6 x
$$

$0,016,18$

$$
\begin{aligned}
& f x x=6 x \quad f y y=2 \quad f x y=-6 \\
& D=6 x \cdot 2-(-6)^{2} \\
& D=0-36<0 \quad D=72-36=36>0 \\
& f_{x} x(6,18)=36>0
\end{aligned}
$$

17. (8 points) Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where

$$
\mathbf{F}(x, y, z)=\langle x+y y+z, x+z\rangle,
$$

where $S$ is the sphere (center $(1,-2,4)$ and radius 10 ), in other words the region in 3D space:

$$
\left\{(x, y, z) \mid(x-1)^{2}+(y+2)^{2}+(z-4)^{2}=100\right\}
$$

