"QUIZ" for Lecture 25

NAME: (print!) Niharika Kompelk

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q25FirstLast.pdf) ASAP BUT NO LATER THAN Dec.8,2020, 8:00 pm

Let

$$
\begin{gathered}
F(x, y, z)= \\
\left\langle\cos \left(\sqrt{1+x^{7}}+z y^{9}\right) \quad, \quad \tan \left(x^{7}+y^{2}+1 / z\right) \quad, \quad \tan ^{-1}\left(e^{x y z}+\cos ^{6}\left(x^{8}-y+3 z\right)\right\rangle,\right.
\end{gathered}
$$

and let $\langle P, Q, R\rangle=\operatorname{curl} \mathbf{F}$. Compute

$$
\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

Be sure to explain everything.
If We let $\langle P, Q, R\rangle=$ curl of $F, \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$ is taking
the divergence of that $\langle P, Q, R\rangle$ function. However, since $\langle P, Q, R\rangle$ is curl F,

$$
\operatorname{div}(\operatorname{cor}(F=O
$$

2. Calculate the surface integral R $\mathrm{R}_{S} \mathbf{F} \cdot d \mathbf{S}$, where

$$
\mathbf{F}(x, y, z)=<2 x+y+z, x+2 y+z, x+y+2 z>
$$

where S is the surface of the box bounded by the planes $x=0, x=1, y=0, y=4, z=0, z=5$.
F is the curl of sone function

$$
\begin{aligned}
& \iint_{D}\left(-P \frac{\partial y}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A \rightarrow \iiint_{D} 0-0+R d A \\
& \iiint_{D} x+y+2 z d x d y d z \rightarrow \int_{0}^{5} \int_{0}^{4} \frac{4 z+2 y+1}{2} d y d z \rightarrow \int_{0}^{5} \delta z+10 d z=150
\end{aligned}
$$

