"QUIZ" for Lecture 25
name: (remit) Daniel Gamelro
Section: 23

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q25FirstLast.pdf) ASAP BUT NO LATER THAN Dec.8,2020, 8:00 pm

Let

$$
\begin{gathered}
F(x, y, z)= \\
\left\langle\cos \left(\sqrt{1+x^{7}}+z y^{9}\right) \quad, \quad \tan \left(x^{7}+y^{2}+1 / z\right) \quad, \quad \tan ^{-1}\left(e^{x y z}+\cos ^{6}\left(x^{8}-y+3 z\right)\right\rangle,\right.
\end{gathered}
$$

and let $\langle P, Q, R\rangle=\operatorname{curl} \mathbf{F}$. Compute

$$
\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

Be sure to explain everything.

$$
\begin{aligned}
& \text { This is equivalent to } \operatorname{div}(\text { curl } F) \\
& \text { Which is always } 0
\end{aligned}
$$

2. Calculate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where

$$
\mathbf{F}(x, y, z)=\langle 2 x+y+z, x+2 y+z, x+y+2 z\rangle
$$

where S is the surface of the box bounded by the planes $x=0, x=1, y=0, y=4, z=0, z=5$.

$$
\begin{aligned}
& \text { using divergence theorem: } \\
& \operatorname{div}(F)=2+2+2=6 \\
& \int S_{S} F \cdot 1 S=6 \cdot \text { Volume enclosed by } S \\
& =6 \cdot 20=120
\end{aligned}
$$

