"Ques" for Lecture 24 - Shaun Coda
January February March April May June July August September October November December
By using stokes theorem, or othorwhise, evaluate $\int_{c} F \cdot d r$, where

$$
F(x, z, q)=(j z+2 z+3 z) i+(x z+2 x+4 z) j+(x y+3 x+4 z) k
$$

Where C is the curve of intersection of the place $x+z+z=1$ acid the cylinder $x^{2}+y^{2}=1$ oriented canterclackuise as viewed from above. Be sure to explain everything.

$$
\begin{aligned}
& g(x, \delta)=1-x-\delta \\
& D=\{(x, \gamma)|-1 \leq x \leq 1,-1 \leq \gamma \leq|\} \\
& \text { Curl } F=\left|\begin{array}{ccc}
\frac{i}{\partial x} & \frac{j}{\partial z} & \frac{k}{\partial z} \\
y z+2 \delta+3 z & x z+2 x+4 z & x y+3 x+4 j
\end{array}\right| \\
& =\left((x+2)-\left(x+\frac{2}{2}\right)\right) i-\left(\left(z+\frac{3}{4}\right)-(\delta+3)\right) j+\left(\left(z+\frac{2}{4}\right)-(z+2)\right) k \\
& =\langle 0,0,0\rangle \\
& \int_{C} F \cdot d r=\int_{S} \operatorname{cur} / F \cdot d S=\int_{S}\langle 0,0,0\rangle d S=0
\end{aligned}
$$

answer is 0

