\qquad sal embar Section: 23

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachmont: q24FirstLast.pdf) ASAP BUT NO LATER THAN Dec. 4, 2020, 8:00 pm

By using Stokes' Theorem, or otherwise, evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where

$$
F(x, y, z)=(y z+2 y+3 z) \mathbf{i}+(x z+2 x+4 z) \mathbf{j}+(x y+3 x+4 y) \mathbf{k}
$$

where C is the curve of intersection of the plane $x+y+z=1$ and the cylinder $x^{2}+y^{2}=1$, oriented counterclockwise as viewed from above. Be sure to explain everything.

$$
\left.\begin{aligned}
& \int_{c} F \cdot d r=\int f_{s} \operatorname{curl}(F) \cdot d s \\
& \operatorname{Curl}(F)=\left\lvert\, \begin{array}{ccc}
i & \frac{2}{2 x} & \frac{2}{2 y}
\end{array} \frac{\frac{2}{2 z}}{y z+2 y+3 z} \quad \sqrt{2 z+2 x+4 z}\right. \\
& r y+3 x+4 y
\end{aligned} \right\rvert\,
$$

Since $\operatorname{corl}(F)=(0,907$ answer is 0 .

