E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q24FirstLast.pdf) ASAP BUT NO LATER THAN Dec. 4, 2020, 8:00 pm

By using Stokes' Theorem, or otherwise, evaluate $\mathrm{R}_{c} \mathbf{F} \cdot d \mathbf{r}$, where

$$
F(x, y, z)=(y z+2 y+3 z) \mathbf{i}+(x z+2 x+4 z) \mathbf{j}+(x y+3 x+4 y) \mathbf{k}
$$

where C is the curve of intersection of the plane $x+y+z=1$ and the cylinder $x^{2}+y^{2}=1$, oriented counterclockwise as viewed from above. Be sure to explain everything.

$$
\begin{aligned}
& \begin{array}{l}
r=1 \\
z=1-y-x
\end{array} \text { find curl } F \rightarrow \int_{C} F \cdot d r-\iiint_{S} \text { curl F } \cdot d s \\
& \text { curl } F=(x+4-x+4, y+3-y+3, z+2-z+2)= \\
& \quad(0,0,0) \\
& \text { fince curl }=0 \text {, the integral using }
\end{aligned}
$$

stake's theorem evaluates to 0 .

