nave: print) AAYUSHI KASERA \qquad

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachmet: q24FirstLast.pdf) ASAP BUT NO LATER THAN Dec. 4, 2020, 8:00 pm

By using Stokes' Theorem, or otherwise, evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where

$$
F(x, y, z)=(y z+2 y+3 z) \mathbf{i}+(x z+2 x+4 z) \mathbf{j}+(x y+3 x+4 y) \mathbf{k}
$$

where C is the curve of intersection of the plane $x+y+z=1$ and the cylinder $x^{2}+y^{2}=1$, oriented counterclockwise as viewed from above. Be sure to explain everything.

$$
z=1-x-y
$$

$$
g(x, y)=1-x-y
$$

$$
\begin{aligned}
& g_{x}=-1 \\
& g_{y}=-1
\end{aligned}
$$

$$
r=0 . .1
$$

$\theta=0.2 \pi$

$$
\therefore \text { Ans }=0
$$

