"QUIZ" for Lecture 23

NAME: (print!) \qquad Golda Section: 23

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: qXFirstLast.pdf) ASAP BUT NO LATER THAN Dec. 1, 2020, 8:00pm

1. Determine whether or not the vector field is conservative. If it is, find a function f such that $\mathbf{F}=\nabla f$.

$$
\begin{aligned}
& \mathbf{F}(x, y, z)=\left(3 x^{2} y^{3} z^{3}+y z\right) \mathbf{i}+\left(3 x^{3} y^{2} z^{3}+x z\right) \mathbf{j}+\left(3 x^{3} y^{3} z^{2}+x y\right) \mathbf{k} \\
& P_{\gamma}=4 x^{2} \gamma^{2} z^{3}+z \quad P_{z}=9 x^{2} \gamma^{3} z^{2}+\gamma \quad q_{z}=9 x^{3} z^{2} z^{2}+x \\
& q_{x}=9 x^{2} \delta^{2} z^{3}+z \quad R_{x}=9 x^{2} z^{3} z^{2}+\gamma \quad R_{\gamma}=9 x^{3} \gamma^{2} z^{2}+x
\end{aligned}
$$

conservative because $P_{\gamma}=q_{x}, P_{z}=R_{x}, q_{z}=R_{z}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=3 x^{2} y^{3} z^{3}+\gamma z \quad f=x^{3} z^{3} z^{3}+x y z+g(\gamma, z) \\
& \frac{\partial f}{\partial y}= 3 z^{3} \gamma^{2} z^{3}+x z+g^{\prime}(y, z)=3 x^{3} y^{2} z^{3}+x z \quad g^{\prime}(y, z)=0 \\
& f= x^{3} \gamma^{3} z^{3}+x y z \quad \frac{\partial f}{\partial z}=3 x^{3} y^{3} z^{2}+x z+s^{\prime}(z) \quad S^{\prime}(z)=0 \\
&+S(z) \quad F=\nabla f=x^{3} z^{3} z^{3}+x y z
\end{aligned}
$$

where C is the closed curve consisting of the boundary of the rectangle

$$
\begin{gathered}
\{(x, y) \mid 0 \leq x \leq 1 \quad, \quad 0 \leq y \leq 1\} \\
\int_{c} 5 y d x+\left(0 x d y=\int_{0}(10-5) d A=\int_{0}^{1} 5 d A\right. \\
\simeq \int_{0}^{1} 5 d x=5 \\
0
\end{gathered}
$$

