E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: qXFirstLast.pdf) ASAP BUT NO LATER THAN Dec. 1, 2020, 8:00 pm

1. Determine whether or not the vector field is conservative. If it is, find a function f such that $\mathbf{F}=\nabla f$.

$$
\left.\begin{array}{l}
\mathbf{F}(x, y, z)=\left(3 x^{2} y^{3} z^{3}+y z\right) \mathbf{i}+\left(3 x^{3} y^{2} z^{3}+x z\right) \mathbf{j}+\left(3 x^{3} y^{3} z^{2}+x y\right) \mathbf{k} \\
\left(\left(9 x^{2} y^{3} z^{2}+x\right)-\left(9 x^{2} y^{3} z^{2}+x\right)\right) \\
\left(9 x^{2} y^{3} z^{2}+y\right)-\left(9 x^{2} y^{3} z^{2}+y\right), \\
\left.\left(9 x^{3} y^{2} z^{3}+z\right)-\left(9 x^{3} y^{2} z^{3}+z\right)\right)
\end{array}\right\} \rightarrow(0,0,0) \rightarrow \text { conservative!. }
$$

$$
f_{x}=3 x^{2} y^{3} z^{3}+y z \quad f_{y}=3 x^{3} y^{2} z^{3}+x z \quad f_{z}=3 x^{3} y^{3} z^{2}+x y
$$

$$
f=x^{3} y^{3} z^{3}+x y z
$$

2. Evalute

$$
\int_{c} 5 y d x+10 x d y \lll 20
$$

where C is the closed curve consisting of the boundary of the rectangle

$$
\begin{aligned}
& \{(x, y) \mid 0 \leq x \leq 1 \quad, \quad 0 \leq y \leq 1\} \\
& (0,0) \quad(0,1)(1,0)(1,1) \\
& Q_{x}=10 \quad P_{y}=5 \\
& Q x-P_{y}=10-5=5 \\
& \iint 5 d y d x \rightarrow \int_{0}^{1} 5 d y \\
& \int_{0}^{1} 5 d x=5
\end{aligned}
$$

