NAME: (print!)
Pottle bola Section: \qquad

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q22FirstLast.pdf) ASAP BUT NO LATER THAN Nov. 16, 8:00 pm

Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ for the given vector field \mathbf{F} and oriented surface S.

$$
\mathbf{F}(x, y, z)=\langle x y, y z, z x\rangle
$$

and S is the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the square $0 \leq x \leq 1,0 \leq y \leq 1$ and has upward orientation.

$$
z=g(x, y)
$$

$$
\begin{aligned}
& F=\langle P, Q, R\rangle \\
& \iint_{S} F \cdot d s=\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A \\
& P=x y, Q=y z, R=z x \\
& \iint_{0}(-x y(-2 x)-y z(-2 y)+x z) d A \\
& \iint_{D}\left(2 x^{2} y+2 y^{2} z+x z\right) d A \\
& \int_{0}^{1} \int_{0}^{1}\left(2 x^{2} y+2 y^{2}\left(1-x^{2}-y^{2}\right)+x\left(1-x^{2}-y^{2}\right)\right) d A \\
& =\frac{83}{180}
\end{aligned}
$$

