E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q22FirstLast.pdf) ASAP BUT NO LATER THAN Nov. 16, 8:00 pm

Evaluate the surface integral $\mathrm{R}^{\mathrm{R}} \mathbf{F} \cdot d \mathbf{S}$ for the given vector field \mathbf{F} and oriented surface S.

$$
\mathbf{F}(x, y, z)=h x y, y z, z x i
$$

and S is the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the square $0 \leq x \leq 1,0 \leq y \leq 1$ and has upward orientation.

$$
\begin{aligned}
& r(x, y)=x i+y j+\left(1-x^{2}-y^{2}\right) k \\
& r_{x}=i-2 x k \quad r_{x} x r_{y}=2 x i+2 y j+k \\
& r_{y}=j-2 y k \\
& -\frac{\left(-x^{2}-y^{2}-1\right)}{4}+\frac{2 x^{3} y}{3}+2 y^{2}\left(-\frac{x^{3}}{3}-y^{2} x+x\right) \int_{0}^{1} 2 x^{2} y+2 y^{2}\left(1-x^{2}-y^{2}\right)+x\left(1-x^{2}-y^{2}\right)+x y \\
& \int_{1}^{1} \frac{-24 y^{4}-10 y^{2}-8 y-3}{12} \\
& \int_{1}^{1} \frac{-24 y^{4}-10 y^{2}-8 y-3}{12}=\left.\frac{y\left(72 y^{4}+50 y^{2}-60 y-45\right)}{180}\right|_{0} ^{1}=\frac{83}{180}
\end{aligned}
$$

