1. Evaluate the surface integral for the given vector field F and oriented surface S.
$\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=<\mathrm{xy}, \mathrm{yz}, \mathrm{zx}>$
And S is the part of the paraboloid $z=x^{\wedge} 2-y^{\wedge} 2$ that lies above the square $0=<x=<1,0=<y=<1$
And has upward orientation.
Convert $F(x, y, z)$ into cylindrical coordinates
Find r theta and r r
Take the cross product of r_theta and r_r
And then take the absolute value
That will give u the value of $d S$
Convert to iterated integral and then solve
I understand the process of doing this problem int theory But have trouble understanding how to actually do it.
