"QUIZ" for Lecture 20

NAME: (print!) ______ Section: _____

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q20FirstLast.pdf) ASAP BUT NO LATER THAN Nov. 16, 8:00pm

1. Find an equation for the tangent plane to the parametric surface

$$x=v^2$$
, $y=u+v$, $z=u^2$, $y=1$ $y=1$

at the point (1, 2, 1). Simplify as much as you can!

$$r_{v} = \langle a_{v}, u, o \rangle$$
 $r_{v} = \langle o, 1; a_{v} \rangle$
 $r_{v} = \langle a_{v}, u, o \rangle$ $r_{v} = \langle o, 1, a_{v} \rangle$

$$\begin{vmatrix} i & j & K \\ a & i & 0 \end{vmatrix} = ai - 4j + aK = (a, -4, a)$$

$$a(x-1)+4(y-a)+a(z-1)=0$$

 $ax-4y+az=-4$ -1 $x-ay+z=-a$

2. Evaluate the surface integral

$$\int \int_S z \, dS \quad ,$$

where S is the triangular region with vertices (2,0,0), (0,2,0), (0,0,2).

$$z=1-x-y$$

 $x+y=-1$
 $x+y=1$
 $x+y=1$

"QUIZ" for Lecture 22

NAME: (print!) _____ Section: ____

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q22FirstLast.pdf) ASAP BUT NO LATER THAN Nov. 16, 8:00pm

Evaluate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ for the given vector field \mathbf{F} and oriented surface S.

$$\mathbf{F}(x,y,z) = \langle xy, yz, zx \rangle \quad ,$$

and S is the part of the paraboloid $z=1-x^2-y^2$ that lies above the square $0 \le x \le 1$, $0 \le y \le 1$ and has upward orientation.

$$\begin{array}{lll}
g = 1 - x^{2} - y^{2} & gx = -ax \\
p = xy & G = yz & R = zx \\
SS(-p, \frac{ag}{ax}) - Q(\frac{ag}{ay}) + R) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ay + zx) dA \\
SS(-xy, -ax - yz, -ax) dA \\
SS(-xy, -ax) dA \\
SS(-xy, -ax) dA \\
SS(-xy, -ax) dA \\
SS(-xy, -ax) dA \\
SS$$