nAME: (print!) Niharika Kompella

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q20FirstLast.pdf) ASAP BUT NO LATER THAN Nov. 16, 8:00 pm

1. Find an equation for the tangent plane to the parametric surface

$$
x=v^{2}, \quad y=u+v, \quad z=u^{2}
$$

at the point $(1,2,1)$. Simplify as much as you can!

$$
\begin{aligned}
& r(v, v)=\left(v^{2}\right) i+(u+v) j+\left(v^{3}\right) k \\
& \frac{\partial r}{\partial v}=0+1 j+3 u^{2} k \quad r_{v} \times r_{v}=\left\langle-3 v^{2}, 6 v^{2} v,-2 v\right\rangle \\
& \frac{\partial r}{\partial r}=2 v i+1 j+0 k \quad-3(1)^{2}, 6(1)^{2}(1),-2(1) \\
& 1=v^{2} \quad v=1 \quad-3,6,-2 \\
& 2=1+v \rightarrow v=1
\end{aligned}
$$

2. Evaluate the surface integral

$$
\mathrm{Z} \mathrm{Z} \mathrm{z} d S
$$

where S is the triangular region with vertices $(2,0,0),(0,2,0),(0,0,2)$.

$$
\begin{aligned}
& \frac{x}{2}+\frac{y}{2}+\frac{z}{2}=1 \\
& x+y+z=2 \\
& z=2-y-x \rightarrow \sqrt{(-1)^{2}+(-1)^{2}+1} d A \rightarrow \sqrt{3} \iint z d A \\
& \frac{z}{2}+\frac{y}{2}=1 \quad z+y=2 \rightarrow y=2-2 \quad \int_{0}^{1} \int_{0}^{2-z} z d A \rightarrow \int_{4}^{1}(2-2) z \rightarrow \frac{2}{3}
\end{aligned}
$$

