1. Find an equation for the tangent plane to the parametric surface
$\mathrm{x}=\mathrm{v}^{\wedge} 2, \mathrm{y}=\mathrm{u}+\mathrm{v}, \mathrm{z}=\mathrm{u}^{\wedge} 2$ at the point $(1,2,1)$
$r=v^{\wedge} 2 i+(u+v) j+u^{\wedge} 2 k$
$r _u=0 i+j+2 u k=0 i+j+k$
$r _v=2 v i+j+0 k=i+j+0 k$
Take the cross product $=\langle-1,1,-1\rangle$
Plug the points and the cross product values into tangent plane equation.
2. Evaluate the surface integral

Where S is the triangular region with vertices $(2,0,0),(0,2,0),(0,0,2)$

Find the two vectors that can be found using the three vertices Take the cross product of the vectors to get (4,4,4) Solve to get $y=2-x$
Use this to find the bounds for the surface integral. $2-x-y(\operatorname{Sqrt}(1+1+!)) d A$
Solve all the way through

