"QUIZ" for Lecture 2

NAME: (print!) \qquad Krithika Patrachari \qquad 22

E-MAIL ADDRESS SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q2FirstLast.pdf) ASAP BUT NO LATER THAN FRIDAY Sept. 11, 8:00 pm \qquad

1. Determine whether the two vectors are orthogonal and if not, whether the angle between them is acute or obtuse. a. $\langle 1,1,1\rangle,\langle 3,-2,-1\rangle$.
b. $\langle 4,3\rangle,\langle 2,-4\rangle$.
a. $\langle 1,1,1\rangle \bullet\langle 3,-2,-1\rangle$

$$
\begin{gathered}
1(3)+(1)(-2)+(1)(-1) \\
=3-2-1=0
\end{gathered}
$$

yes, since the dot product is 0 , the y are orthogonal

$$
\begin{aligned}
& \text { b. }\langle 4,3\rangle \cdot\langle 2,-4\rangle \\
& 4(2)+3(-4)=8-12=-4
\end{aligned}
$$

NO, the vectors are not orthogonal

$$
\begin{aligned}
& \cos \theta=\frac{-4}{\sqrt{4^{2}+3^{2}} x \sqrt{2^{2+(+4)^{2}}}} \\
& \cos \theta=\frac{-4}{5(\sqrt{20})} \\
& \cos \theta^{-1}\left(\frac{-4}{5 \sqrt{20}}\right)=1.75^{\circ}
\end{aligned}
$$

The angle between the vectors is acute.
2. Calculate $\mathbf{v} \times \mathbf{w}$, if

$$
\mathbf{v}=\langle 0,1,-1\rangle \quad, \quad \mathbf{w}=\langle 1,-1,0\rangle .
$$

$$
\begin{aligned}
\left|\begin{array}{ccc}
i & j & k \\
0 & 1 & -1 \\
1 & -1 & 0
\end{array}\right|= & i\left|\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right|-j\left|\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right|+k\left|\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right| \\
& =i(0-1)-j(0+1)+k(0-1) \\
& =-i-j-k=\langle-1,-1,-1\rangle
\end{aligned}
$$

