name: (print!) Niharika Kompelk

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q19FirstLast.pdf) ASAP BUT NO LATER THAN Nov. 12, 8:00 pm
1.

Determine whether or not the vector field

$$
F(x, y, z)=y^{2} z^{3} \mathbf{i}+2 x y z^{3} \mathbf{j}+3 x y^{2} z^{2} \mathbf{k}
$$

is conservative. If it is conservative, find a function f such that $\mathbf{F}=\nabla f$.

$$
\begin{aligned}
& \left(6 x z^{2} y-6 x y z^{2}, 3 y^{2} z^{2}-3 y z^{2}, 2 y z^{3}-2 y z^{3}\right) \\
& =0,0,0 \rightarrow \text { conservative! } \\
& 0 i+2 x z^{3} j+6 x y z K \rightarrow F=2 x z^{3} j+6 x y z k
\end{aligned}
$$

2. Show that the line integral Z

$$
{ }_{c} 2 x y^{2} d x+2 x^{2} y d y
$$

is independent of the path C, and evaluate it if C is any path from $(1,0)$ to $(0,1)$.

$$
\begin{gathered}
4 x y=4 x y \rightarrow \int \quad 2(1) y^{2}(0)+2(1) y d y \\
\int_{0}^{1} 2 y^{2}\left(+2 y d y \rightarrow \int_{0}^{1} 2 y d y+\left.y^{2}\right|_{0} ^{1}=1\right. \\
2 \times(1) d x+2 x(1)(0) \quad \int_{0}^{1} 2 x+\int_{0}^{1} 2 x d x+\left.x^{2}\right|_{0} ^{1}=1 \\
1+1=2
\end{gathered}
$$

