NAME: (print!) \qquad Section: \qquad

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q19FirstLast.pdf) ASAP BUT NO LATER THAN Nov. 12, 8:00 pm
1.

Determine whether or not the vector field

$$
F(x, y, z)=y^{2} z^{3} \mathbf{i}+2 x y z^{3} \mathbf{j}+3 x y^{2} z^{2} \mathbf{k}
$$

is conservative. If it is conservative, find a function f such that $\mathbf{F}=\nabla f$.

$$
\begin{aligned}
& \frac{r f}{\partial y}=y z^{3} \quad \frac{\partial a}{\partial x}=2 y z^{3} \\
& \frac{\partial a}{\partial z}=6 x y z^{2} \quad \frac{\partial 0}{\partial y}=6 x y z^{2} \\
& \frac{\partial \theta}{\partial x}=3 y z^{2} \quad \frac{\partial \rho}{\partial z}=3 y^{2} z^{2}
\end{aligned}
$$

conservative
2. Show that the line integral

$$
\int_{C} 2 x y^{2} d x+2 x^{2} y d y
$$

is independent of the path C, and evaluate it if C is any path from $(1,0)$ to $(0,1)$.

$$
\begin{aligned}
& f=2 x y^{2} i+2 x^{2} y j \\
& \quad \int \rho d x=\int 2 x y^{2} d x=x^{2} y^{2}+g(y) \\
& f y=\int x^{2} y^{2}+g(y) d y
\end{aligned}
$$

