1. Partial $x=y^{\wedge} 2 z^{\wedge} 3$

Partial $y=2 x y z^{\wedge} 3$
Partial $z=3 x y^{\wedge} 2 z^{\wedge} 2$
$\operatorname{Int}\left(y^{\wedge} 2 z^{\wedge} 3\right)=x y^{\wedge} 2 z^{\wedge} 3+g(y, z)$
Partial $y=2 x y z^{\wedge} 3+g _y(y, z)$
$f(x, y, z)=x y^{\wedge} 2 z^{\wedge} 3+h(z)$
$f(x, y, z)=x y^{\wedge} 2 z^{\wedge} 3+c$
2. Show that the line integral is independent of path C

Take the partial y of $2 x y^{\wedge} 2$
Take the partial x of $2 x^{\wedge} 2 y$
Partial $y=4 x y$
Partial $x=4 x y$
$4 x y=4 x y$ so line integral is independent from the path C

