name: (rime) Joe Barr

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: qXFirstLast.pdf) ASAP BUT NO LATER THAN Oct. 29, 8:00 pm

1. Use polar coordinates to compute the double integral

$$
\iint_{D} x y d A
$$

where

$$
D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0\right\}
$$

$$
\int_{0}^{2 \pi} \int_{0}^{1} \frac{\sin (28)}{2} r d r=\int_{0}^{1} \frac{\sin (2 \theta)}{2} r d r
$$

$$
\int_{0}^{2 \pi} \frac{\sin (2 \theta)}{4} d \theta \Rightarrow \begin{aligned}
& u=2 \theta=[0,4 \pi] \Rightarrow \int_{0}^{2 \pi} \frac{\sin (u)}{8} \\
& d u=2 d \theta \Rightarrow \frac{d u}{2}=\left.d \theta \Rightarrow \frac{-\cos (u)}{8}\right|_{0} ^{2 \pi}
\end{aligned}
$$

2. Evaluate the iterated integral by converting it to polar coordinates

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} e^{x^{2}+y^{2}} d x d y
$$

Note: The previous version had a typo ($d y d x$ instead of $d x d y$, that made it nonsense). I thank Midi "Wendy" Weng for pointing it out (and see won a dollar).

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} e^{x^{2}+y^{2}} d x d y \\
& D=\left\{(r, \theta) \mid 0 \leq y \leq 1 \quad 0 \leq x \leq \sqrt{1-y^{2}}\right\}
\end{aligned}
$$

$$
\int_{0}^{1} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{r^{2}} d \theta=-\quad=-\frac{\pi}{2}+\frac{e \pi}{2}
$$

MADCE

