name: (print!) Niharika Kumpella

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q11FirstLast.pdf) ASAP BUT NO LATER THAN Oct. 12, 8:00 pm

1. Use Largange multipliers (no credit for other methods) to find the largest value that $x+y+z$ can be, given that $x y z=125$

$$
\begin{aligned}
\nabla f=\langle 1,1,1\rangle & \nabla g=\langle y z, x z, x y\rangle \\
1 & =\lambda y z \quad
\end{aligned} \begin{aligned}
\quad x & =\frac{1}{z \lambda} \quad \frac{z}{z \lambda}+\frac{1}{x \lambda}
\end{aligned}=1250
$$

2. Use Largange multipliers (no credit for other methods) to find the largest value that $x y z$ can be, given that $x+y+z=15$

$$
\begin{aligned}
& \nabla_{f}:\left\langle y_{2}, 1 z, x y\right\rangle \quad \nabla_{q}=\langle 1,1,1\rangle \\
& \left.\begin{array}{l}
y z=1 \lambda \\
x z=1 \lambda \\
x y=17
\end{array}\right\} \rightarrow \begin{array}{l}
x=\frac{\lambda}{z} \\
y=\frac{\lambda}{z} \\
z=\frac{\lambda}{x}
\end{array} \rightarrow \frac{2 \lambda}{z}+\frac{\lambda}{x}=15 \frac{2 x \lambda}{x z}+\frac{z \lambda}{x z}=15 \\
& x y=17 \\
& \frac{2 x \lambda+z \lambda}{x z}=15+15 x z=\lambda(2 x+z) \rightarrow \eta=\frac{15 x z}{2 x+z} \\
& \lambda=25! \\
& \left.\begin{array}{ll}
\begin{array}{l}
y z=25 \\
x z=25 \\
x y=25
\end{array} & \begin{array}{l}
x=\frac{25}{z} \\
y=\frac{25}{5} \\
z=\frac{25}{x}
\end{array}
\end{array}\right\} \rightarrow \begin{array}{l}
x=5, y=5, z=5 \\
f(5,5,5)=125!
\end{array}
\end{aligned}
$$

