1. Use Lagrange multipliers to find the smallest value that $x+y+z$ can be given that $x y z=125$

Gradient $\mathrm{f}=\langle 1,1,1\rangle$
Gradient $g=\langle y z, x z, x y\rangle$
Gradient $\mathrm{f}=$ (lambda)gradient g
Set each x, y , z value equal to each other with lambda
(Lambda) yz = 1
(Lambda) $x z=1$
(Lambda) $x y=1$
$x=y=z$
$f(5,5,5)=15$
2. Use Long-range multipliers to find the largest value that $x y z z y$ can be given that $x+y+z=15$

Gradient $\mathrm{f}=\langle\mathrm{yz}, \mathrm{xz}, \mathrm{xy}\rangle$
Gradient $g=\langle 1,1,1\rangle$
Same process as first problem, gradient f = gradient g * lambda $x=y=z$
$f(5,5,5)=125$

