"QUIZ" for Lecture 11

NAME: (print!) Aditya Sivakymar Section: 24

E-MAIL SCANNED .pdf OF COMPLETED QUIZ to DrZcalc3@gmail.com (Attachment: q11FirstLast.pdf) ASAP BUT NO LATER THAN Oct. 12, 8:00pm Deadline extended to Oct. 17

1. Use Largange multipliers (no credit for other methods) to find the smallest value that x+y+z can be, given that xyz=125

$$f(x,y,z) = x+y+z$$
 $\nabla f = \langle 1,1,1 \rangle$ $\chi = x+z = 0$ $\forall f = \langle 1,1,1 \rangle$ $\chi = x+z = 0$ $\forall f = \langle 1,1,1 \rangle$

<1,1,17= X <42, x2, x97

$$\lambda yz=1$$
 $\lambda xz=1$
 $\lambda xz=1$
 $\lambda xz=\lambda xy$
 $\lambda xz=\lambda xy$
 $\lambda xz=\lambda xy$
 $\lambda xz=\lambda xy$
 $\lambda xz=\lambda xy$

2. Use Largange multipliers (no credit for other methods) to find the largest value that xyz can be, given that x + y + z = 15

$$f(\gamma_1\gamma_1z)=\chi_1z$$
 $\nabla f=(\gamma_2,\chi_2,\chi_7)$ $3\chi=15$
 $g(\chi_1\gamma_2)=\chi_1\gamma_2$ $\nabla g=(\gamma_1,\gamma_1)$ $\chi=5=\gamma_2$