E-MAIL ADDRESS: (print!) aa 2036 scarletmall.rutgers.edu

1. Show that the triangle with vertices $P=(1,0,0), Q=(0,1,0)$, and $R=(0,0,1)$ is an equilateral

$$
\begin{aligned}
& \text { dist }(P Q)=\sqrt{(0-1)^{2}+(1-\sigma)^{2}+(0-0)^{2}}=\sqrt{2} \\
& \operatorname{dist}(P R)=\sqrt{(1-0)^{2}+(0-1)^{2}+(1-\sigma)^{2}}=\sqrt{2} \\
& \text { dist }(Q R)=\sqrt{(0-\sigma)^{2}+(0-1)^{2}+(1-\sigma)^{2}}=\sqrt{2}
\end{aligned}
$$

all distances equal $\sqrt{2}$ so each side length is equal
2. Determine whether the following two lines ever meet. If they do meet, where?

$$
\mathbf{r}_{1}(t)=\langle 1,0,0\rangle+t\langle 1,2,3\rangle \quad, \quad \mathbf{r}_{2}(t)=\langle 0,1,0\rangle+t\langle 2,1,3\rangle
$$

$$
\begin{aligned}
& r_{1}=(1,0,0)+(t, 2 t, 3 t) \\
& r_{1}=(1+t, 2 t, 3 t) \\
& =\frac{1+t=2 s}{}|2 t=1+s| 3 t=3 s \\
& \hline 1+t=2 t|2 t=1+t| t=s
\end{aligned}
$$

$$
r_{2}=(0,1,0)+(2 t,+3 t)
$$

$$
r_{2}=\left(2 t_{1} 1+t_{1} 3 t\right)
$$

$$
r_{2}=(25,1+5,3 s)
$$

$$
\begin{aligned}
& r_{2}=(25,1+5,3 s) \\
& t=1=5 \rightarrow(1+1,2(1), 3(1)) \\
& (2,2,3)
\end{aligned}
$$

point $(2,2,3)$ where they meet

