\#ADDED SEPT. 3, 2020: IN THE LIMERICK BELOW I MESSED UP! \#the last line should be
\#Equals log of hie cube root of e
\#SORRY!
\#I THANKS ORION KRESS SANFILIPPO FOR POINTING IT OUT
\#GETTING TO KNOW YOU QUIZ FOR Dr. Z.'s Math251(22,23,24) Rutgers University
\# Please Edit this ,txt page with Answers
\#Email DrZcalc3@gmail.com
\#Subject: q0
\#with an attachment called
\#q0FirstLast.txt
\#when I tell you during the first lecture (Sept. 3) if you attended it
\#Or right after, if you watched the video
\#
\#----------- My Name Is: Joe Barr
\# My [Professional] Goals in Life are: Create a programming language and computer system.
\# My Hobbies are: Reading and learning about S.T.E.M
\#Please Decipher and Prove the assertion in the following limerick
\# The integral of z-squared $d z$
\# From one to the cube root of three
\# Times the cosine
\# Of three pi over nine
\# Equals log of the cube root of three

$$
\begin{aligned}
& \int_{1}^{\sqrt{3}} z^{2} d z \cdot \cos \left(\frac{3 \pi}{9}\right)=\log (\sqrt[3]{e}) \\
& \left.\left.\frac{z^{3}}{3}\right|_{1}\right|_{1} ^{\sqrt{3}} \cdot \cos \left(\frac{3 \pi}{9}\right)=\log (\sqrt[3]{e}) \\
& \left(\frac{(\sqrt{3})^{3}}{3}-\frac{1}{3}\right) \cdot \cos \left(\frac{3 \pi}{9}\right)=\log (\sqrt[3]{e} \\
& \left(\frac{3 \sqrt{3}}{3}-\frac{1}{3}\right) \cdot \frac{1}{2}=\log (\sqrt[3]{e}) \\
& \frac{\sqrt{3}}{2}-\frac{1}{6}=\log (\sqrt[3]{e})
\end{aligned}
$$

