NAI	ME: (print!)						
Sect	Section: E-Mail address:						
MAT	MATH 251 (4,6,7), Dr. Z., Exam 2, Tue., Nov. 21, 2017, SEC 118						
FRAME YOUR FINAL ANSWER(S) TO EACH PROBLEM Do not write below this line							
1.							
2.	(out of 10)						
3.	(out of 10)						
4.	(out of 10)						
5.	(out of 10)						
6.	(out of 10)						
7.	(out of 10)						
8.	(out of 10)						
9.	(out of 10)						
10.	(out of 10)						

MAKE SURE TO PUT THE TYPE!

Types: Number, Function of variable(s), 2D vector of numbers, 3D vector of numbers, 2D vector of functions (aka 2D vector-field), 3D vector of functions (aka 3D vector field), equation of a plane, parametric equation of a line, equation of a line, equation of a surface, equation of a line, DNE (does not exist), abstract double-integral, abstract triple-integral.

1. (10 pts.)

Find the Jacobian of the transformation from (u, v, w)-space to (x, y, z)-space.

$$x=uv+w\quad ,\quad y=uw+v\quad ,\quad z=vw+u\quad ,$$

at the point (u, v, w) = (2, 2, 2).

The **type** of the answers is:

- 2. (10 points altogether)
- (i) (3 points) Show that

 $\mathbf{F} = \langle \, 3 \, x^2 yz + yz + \cos{(x+y+z)} \,\,,\, x^3 z + xz + \cos{(x+y+z)} \,\,,\, x^3 y + xy + \cos{(x+y+z)} \,\rangle \quad,$ is a conservative vector field.

- (ii) (4 point) Find a function f(x, y, z) such that $\mathbf{F} = \nabla f$.
- (iii) (3 points) Find the line-integral $\int_C \mathbf{F}.d\mathbf{r}$ where C is the curve

$$\mathbf{r} = \langle \sin t, \cos t + 1, \sin 2t \rangle$$
 , $0 \le t \le \pi$.

The **types** of the answer is: For (ii)

For (iii)

answers (ii) f(x,y,z)=

(iii)

3. (10 points)

Sketch the region of integration and change the order of integration.

$$\int_{1}^{2} \int_{0}^{e^{x}+1} F(x,y) \, dy \, dx$$

The **type** of the answer is:

4. (10 points) Use Largange multipliers (no credit for other methods) to find the smalle value that $x + y + z$ can be, given that $xyz = 1$.	est
value that $x + y + z$ can be, given that $xyz = 1$.	
The type of the answer is:	
ans.	

5. (10 points) Compute the volume integral

$$\int \int \int_E 48 \, x \, y \, z \, dV$$

where E is the region in 3D

$$\{(x, y, z) \mid 0 \le x \le y \le z \le 1\}$$
.

The \mathbf{type} of the answer is:

6. (10 points) By converting to polar coordinates, compute

$$\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \frac{\left(x^2 + y^2\right)^2}{243\pi} dy \, dx$$

The type of the answer is	The \mathbf{t}	ype	of	the	answer	is
----------------------------------	------------------	-----	----	-----	--------	----

7. (10 points) Compute the line integral

$$\int_C \frac{4\sqrt{3} x y z}{3} \, ds \quad ,$$

where C is the line-segment joining (0,0,0) and (1,1,1)

The **type** of the answer is:

8. (10 points) Compute

$$\int_0^3 \int_{\sqrt{y/3}}^1 e^{x^3} \, dx \, dy \quad .$$

(Hint: Not even Dr. Z. can do $\int e^{x^3} dx$, so you must be clever, and first change the order of integration.)

The \mathbf{type} of the answer is:

9. (10 points) Compute the volume integral

$$\int \int \int_E \frac{5(x^2 + y^2 + z^2)}{4\pi} \, dV \quad ,$$

where

$$E = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\} \quad .$$

The \mathbf{type} of the answer(s) is:

10. (10 points) Find $\nabla \cdot \mathbf{F}$ if

$$\mathbf{F} = \langle \sin(xy), \sin(yz), \sin(xz) \rangle$$
.

The \mathbf{type} of the answer is: