Solutions to the “QUIZ” for Sept. 21, 2009

1. Find the limit if it exists, or show that the limit does not exist.

\[
\lim_{(x,y)\to(0,0)} \frac{2x}{2x+3y} .
\]

Sol. We first try to plug-it-in, and get 0/0, which is indeterminate.

We next try to prove that the limit does not exist by exploring the limits when approaching (0,0) along the line \(y = mx \).

\[
\lim_{(x,y)\to(0,0)} \frac{2x}{2x+3y} = \lim_{x\to0} \frac{2x}{2x+3mx} = \lim_{x\to0} \frac{2}{2+3m} .
\]

Since this depends on \(m \), the limit does not exist, since different paths to (0,0) yield different limits, and there is no consensus.

Comments: About half of the people got it right. Some people picked two specific lines, e.g. \(y = x \) and \(y = 2x \), and got different values for the limits (2/5 and 1/4) and deduced that the limit does not exist. That’s OK too.

Common mistake: 1. Some people left the answer as \(\lim_{x\to0} \frac{2}{2+3m} \). This is correct, but not the final answer. The final answer should not have \(\lim \) in it!

2. Find the limit if it exists, or show that the limit does not exist.

\[
\lim_{(x,y)\to(0,0)} \frac{x^5}{x^2+y^2} .
\]

Solution: Once again it gives 0/0. If we do as above, we would get that the limit is 0, no matter on which \(y = mx \) you are travelling to (0,0). So the limit probably exists, and if it does it is equal to 0. But this is not a conclusive proof. To prove it conclusively, we convert to polar coordinates:

\[
x = r \cos \theta , \quad y = r \cos \theta .
\]

Recall that \(x^2 + y^2 = r^2 \), so

\[
\lim_{(x,y)\to(0,0)} \frac{x^5}{x^2+y^2} = \lim_{r\to0} \frac{(r \cos \theta)^5}{r^2} = \lim_{r\to0} \frac{r^5 \cos^5 \theta}{r^2} = \lim_{r\to0} r^3 \cos^5 \theta = \cos^5 \theta \lim_{r\to0} r^3 = \cos^5 \theta \cdot 0 = 0 .
\]
Comments: Only about %20 got it completely. If you did the first part correctly (as did about %60 of the students) that the limit **probably** exists and equals 0, you would have gotten half-credit (if it were in a real test).

Gross Mistake: Some people left the answer as

\[
\frac{x^3}{1 + m^2}
\]

This is a very bad **conceptual mistake**. The answer to a limit problem (in \(x\)) can never have \(x\) in it!, and (if the limit is with \((x,y)\) it can never have \(x\) or \(y\)!).