Solutions to the “QUIZ” for Sept. 10, 2009

1. Find an equation of the plane that passes through the points \((0, 1, 1), (1, 0, 1), (1, 1, 0)\).

Sol. Let’s call \(P = (0, 1, 1), \ Q = (1, 0, 1), \ R = (1, 1, 0)\).

We need **two** direction vectors that lie on that plane. For example

\[
PQ = \langle 1 - 0, 0 - 1, 1 - 1 \rangle = \langle 1, -1, 0 \rangle
\]

\[
PR = \langle 1 - 1, 0 - 1, 0 - 0 \rangle = \langle 1, 0, -1 \rangle
\]

To get the **normal** we take the cross-product \(PQ \times PR\).

\[
PQ \times PR = \begin{vmatrix} i & j & k \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{vmatrix}
\]

\[
= \begin{vmatrix} i & -1 & 0 \\ 0 & 1 & -1 \end{vmatrix} - \begin{vmatrix} i & 1 & 0 \\ 1 & 0 & -1 \end{vmatrix} + \begin{vmatrix} i & 1 & -1 \\ 1 & 0 & 0 \end{vmatrix}
\]

\[
= i((-1) \cdot (-1) - 0 \cdot 0) - j(1 \cdot (-1) - 0 \cdot 1) + k(1 \cdot 0 - (-1) \cdot 1)
\]

\[
= i + j + k
\]

Finally converting to the **usual** notation, we get \(n = \langle 1, 1, 1 \rangle\). The equation of a general plane is

\[
a(x - x_0) + b(y - y_0) + c(z - z_0) = 0,
\]

where \(\langle a, b, c \rangle = \langle 1, 1, 1 \rangle\) is the normal vector we just found, and \((x_0, y_0, z_0)\) is **any** point (either \(P, Q\) or \(R\)). Picking \(P\) we get

\[
1(x - 0) + 1(y - 1) + 1(z - 1) = 0
\]

that simplifies to

\[
x + y + z = 2.
\]

Ans.: \(x + y + z = 2\).

Comments: About %70 got it perfectly. About %10 were clueless. The rest made some calculational mistakes. Quite a few people got \(n = \langle 1, 1, 1 \rangle\) correctly, but messed up with the last part of plugging-in \((x_0, y_0, z_0) = (0, 1, 1),\) and got either \(x + y + z = 0,\) or \(x + y + z = 3\) or other wrong things. Remember that you can always **check** your answer by plugging-in the three points and see that they lie on the plane. For \(P = (0, 1, 1): \ 0 + 1 + 1 = 2,\) for \(Q = (1, 0, 1), \ 1 + 0 + 1 = 2,\) for \(R = (1, 1, 0): \ 1 + 1 + 0 = 2,\) they all agree. People who got, for example \(x + y + z = 3\) could have realized their mistake by doing this checking.
2. Find the intersection of the line

\[\mathbf{r}(t) = \langle 1, 1, 0 \rangle + t\langle 0, 2, 4 \rangle \]

and the plane

\[x + y + z = 14 \]

Solution: First spell-out \(\mathbf{r}(t) \):

\[\mathbf{r}(t) = \langle 1, 1, 0 \rangle + t\langle 0, 2, 4 \rangle = \langle 1 + 2t, 1, 4t \rangle , \]

and in scalar form

\[x = 1 , \quad y = 1 + 2t , \quad z = 4t . \]

Now plug these expressions for \(x, y, z \) in terms of the parameter \(t \) into the equation of the plane \(x + y + z = 14 \) getting

\[1 + (1 + 2t) + 4t = 14 \]

Simplifying, we get

\[2 + 6t = 14 \]

so

\[6t = 12 \]

that gives \(t = 2 \). Having found the lucky \(t \) (namely 2) you plug it in back into

\[x = 1 , \quad y = 1 + 2\times 2 = 5 , \quad z = 4\times 2 = 8 \]

getting

\[x = 1 , \quad y = 1 + 2 \cdot 2 = 5 , \quad z = 4 \cdot 2 = 8 \]

So the **lucky point** that belongs both to the plane and the line is the point \((1, 5, 8) \).

Ans.: The intersection of the line and the plane given by the problem is the point \((1, 5, 8) \).

Comments: About \(85\% \) got it perfectly. A few people forgot to plug-in \(t = 2 \) back into \(x, y, z \). Other people messed up the very simple algebra. These people should review their algebra! BTW, this was problem 32 from section 12.5 that I did it in class (by accident, I picked a random problem and forgot that this was the problem that I picked for the “quiz”).