1. Find an equation for the tangent plane to the parametric surface

\[x = v^2, \quad y = u + v, \quad z = u^2, \]

at the point \((1, 2, 1)\). Simplify as much as you can!

Sol. Here

\[\mathbf{r}(t) = \langle v^2, u + v, u^2 \rangle \]

Taking derivatives with respect to \(u\) and \(v\), we get

\[\mathbf{r}_u = \langle 0, 1, 2u \rangle, \quad \mathbf{r}_v = \langle 2v, 1, 0 \rangle. \]

Next, we have to find out what are \(u\) and \(v\) at the point \((1, 2, 1)\). We have to solve, for \(u, v\):

\[1 = v^2, \quad 2 = u + v, \quad 1 = u^2 \]

From the first equation \(v = -1\) or \(v = 1\), from the last, \(u = -1\) or \(u = 1\), but to satisfy the second equation, only \(u = 1\) and \(v = 1\) are OK. So we know that at the designated point, \(u = 1, v = 1\).

Plugging these above gives:

\[\mathbf{r}_u = \langle 0, 1, 2 \rangle, \quad \mathbf{r}_v = \langle 2, 1, 0 \rangle. \]

To find the normal, we take the cross-product

\[\mathbf{n} = \langle 0, 1, 2 \rangle \times \langle 2, 1, 0 \rangle = \langle -2, 4, -2 \rangle. \]

(you do it!).

The equation of the tangent plane is

\[\langle x - x_0, y - y_0, z - z_0 \rangle \cdot \mathbf{n} = 0, \]

So, in this problem, it is

\[\langle x - 1, y - 2, z - 1 \rangle \cdot \langle -2, 4, -2 \rangle = 0, \]

that spells out to:

\[(-2)(x - 1) + 4(y - 2) + (-2)(z - 1) = 0. \]
Dividing both sides by
−2 and simplifying, we get

\[x - 2y + z = -2 \] .

Ans. \(x - 2y + z = -2 \) (type: Eq. of a plane).

Comments: About %40 got it perfectly, another %20 got it correctly, but didn’t completely simplify, another %20 did it the right way but messed up somewhere. Some people did a very bad mistake, by not plugging in \(u = 1, v = 1 \). You had to find what \(u \) and \(v \) are at the designated point, and then plug-them-in. If you are not sure how to find the \(u \) and \(v \) (like I did above), you should confess, and stop right there. Leaving \(u \) and \(v \) in the answer is **nonsense**!

2. Evaluate the surface integral

\[\iint_S z \, dS \]

where \(S \) is the triangular region with vertices \((2, 0, 0), (0, 2, 0), (0, 0, 2)\).

Sol. We first find the equation of the plane passing through the three points. This turns out to be

\[x + y + z = 2 \] .

(in this easy case you can do it by “inspection” (adding up the three coordinates always gives you 2, in general you would have to work hard, doing \(\mathbf{n} = \mathbf{AB} \times \mathbf{AC} \) etc.)

Expressing this plane in **explicit** form, we have

\[z = 2 - x - y \] .

The relevant formula is:

\[\iint_S f(x, y, z) \, dS = \iint_D f(x, y, g(x, y)) \sqrt{1 + g_x^2 + g_y^2} \, dx \, dy \] ,

where \(D \) is the projection of the region on the \(xy \)-plane.

Here \(g(x, y) = 2 - x - y \), so \(g_x = -1, g_y = -1 \), and \(\sqrt{1 + g_x^2 + g_y^2} = \sqrt{3} \). So

\[\iint_S z \, dS = \iint_D (2 - x - y) \sqrt{3} \] .

It still remains to find out the region \(D \). The plane \(z = 2 - x - y \) meets the \(xy \) plane (alias \(z = 0 \)) at the line \(x + y = 2 \). Since \(x \geq 0, y \geq 2 \) the region \(D \) is

\[D = \{(x, y)|x \geq 0, y \geq 0, x + y \leq 2 \} \] .

A type I description is

\[D = \{(x, y)|0 \leq x \leq 2, 0 \leq y \leq 2 - x \} \] .
So we get
\[\int_0^2 \int_0^{2-x} \sqrt{3} \, dy \, dx . \]

The inner integral is
\[\int_0^{2-x} \sqrt{3} \, dy = \sqrt{3}y \bigg|_0^{2-x} = \sqrt{3}(2-x) . \]

The outer integral is:
\[\int_0^2 \sqrt{3}(2-x) \, dx = \sqrt{3}(2x - \frac{x^2}{2}) \bigg|_0^2 = 2\sqrt{3} . \]

Ans.: $2\sqrt{3}$ (type: number).

Comments: I really didn’t allow enough time, so no one got it completely. Quite a few courageous people almost got it, but only messed up in figuring out D, and took it as $[0, 2] \times [0, 2]$.