NAME: (print!)
Section: \qquad E-Mail address: \qquad

MATH 251 (1-6,10-11), Dr. Z. , Fourth Practice for Exam 1 (version of 6:44am, Oct. 8, 2009, thanks to Victoria Gagliardi)
(Previous Version of 9:08am, Oct. 7, 2009, thanks to Victoria Gagliardi)
FRAME YOUR FINAL ANSWER(S) TO EACH PROBLEM
Do not write below this line

1. (out of 10)
2. (out of 10)
3. (out of 10)
4. (out of 10)
5. (out of 10)
6. (out of 10)
7. (out of 10)
8. (out of 10)
9. (out of 10)
10. (out of 10)

Types: Number, Function of variable(s), 2D vector of numbers, 3D vector of numbers, 2 D vector of functions, 3 D vector of functions, equation of a plane, parametric equation of a line, equation of a line, equation of a surface, equation of a line, DNE (does not exist).

1. (10 points) Find an equation of the tangent plane to the given surface at the specified point.

$$
z=\ln \left(x^{2}+y^{2}\right) \quad, \quad(1,1, \ln 2)
$$

The types of the answer are:
2. (10 points) Find an equation of the tangent plane to the surface

$$
e^{x+y+z}=e^{3}+x y z-1
$$

at the point $(1,1,1)$.
The type of the answer is:
3. (10 points) Find the curvature for

$$
\mathbf{r}(t)=\sin 2 t \mathbf{i}+\cos t \mathbf{j}+t \mathbf{k}
$$

The types of the answers are:
4. (10 points) Compute $f_{x x}, f_{x y}$, and $f_{y y}$ if

$$
f(x, y)=\sin \left(x^{3}+x y+y^{3}\right)
$$

The types of the answers are:
5. (10 points) Find the velocity, acceleration, and speed of a particle with the given position function.

$$
\mathbf{r}(t)=e^{t^{2}} \mathbf{i}+\sin t \mathbf{j}+\cos 3 t \mathbf{k}
$$

The types of the answer are:
6. (10 points) Find a parametric equation of the line of intersection of the planes $4 x+y+z=$ 6 and $x+2 y+4 z=7$.

The type of the answer is:
7. (10 points) Find a parametric equation for the tangent line to the curve with the given parametric equation at the specified point

$$
x=\cos 3 t \quad, \quad y=\sin 2 t \quad, \quad z=t^{3}+1 \quad ; \quad(1,0,1)
$$

The types of the answers are:
8. (10 points) Write a definite integral that describes the length of the curve

$$
\mathbf{r}(t)=\left\langle e^{t}, e^{2 t}, e^{t} \sin 2 t\right\rangle \quad, \quad 0 \leq t \leq 4 \pi
$$

Do not try to evaluate the integral!
The type of the answer is:
9. (10 points) Find $\mathbf{r}(t)$ if

$$
\mathbf{r}^{\prime}(t)=3 t^{2} \mathbf{i}+2 t \mathbf{j}+\cos t \mathbf{k}
$$

and

$$
\mathbf{r}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k}
$$

10. (10 pts.) A force with magnitude 100 N is moving a body of mass 10 kg in the direction $\langle-1,-2,-3\rangle$. If at $t=0$ the body is at location $(2,0,1)$ and it is moving with velocity $\langle 1,1,1\rangle$,
(i)find its position vector $\mathbf{r}(t)$ at time t;
(ii) find its speed at time t.

The types of the answers are:

Answers:

1. $z=x+y+\ln 2-2$ (Type: equation of a plane).
2. $x+y+z=3$ (Type: equation of a plane).
3.

$$
\frac{\sqrt{\cos ^{2} t+16 \sin ^{2} 2 t+4(\cos 2 t \cos t+2 \sin 2 t \sin t)^{2}}}{{\sqrt{4 \cos ^{2} 2 t+\sin ^{2} t+1}}^{3}}
$$

(Type: function of t).
4.

$$
\begin{gathered}
f_{x x}=-\left(3 x^{2}+y\right)^{2} \sin \left(x^{3}+x y+y^{3}\right)+6 x \cos \left(x^{3}+x y+y^{3}\right) \\
f_{x y}=-\left(3 x^{2}+y\right)\left(x+3 y^{2}\right) \sin \left(x^{3}+x y+y^{3}\right)+\cos \left(x^{3}+x y+y^{3}\right) \\
f_{y y}=-\left(x+3 y^{2}\right)^{2} \sin \left(x^{3}+x y+y^{3}\right)+6 y \cos \left(x^{3}+x y+y^{3}\right)
\end{gathered}
$$

($f_{y y}$ corrected Oct. 7, thanks to Victoria Gagliardi)
(Type: functions of x, y).
5.

$$
\begin{gathered}
\mathbf{v}(t)=2 t e^{t^{2}} \mathbf{i}+\cos t \mathbf{j}-3 \sin 3 t \mathbf{k} \\
\mathbf{a}(t)=\left(4 t^{2}+2\right) e^{t^{2}} \mathbf{i}-\sin t \mathbf{j}-9 \cos 3 t \mathbf{k}
\end{gathered}
$$

speed $=\sqrt{4 t^{2} e^{2 t^{2}}+\cos ^{2} t+9 \sin ^{2} 3 t}$.
(Type: vectorsof functions of t, function of t).
6. $x=\frac{5}{7}+2 t, y=\frac{22}{7}-15 t, z=7 t,(-\infty<t<\infty)$. (Type: parametric eq. of a line).
7. $x=1, y=2 t, z=1,(-\infty<t<\infty)$. (Type: parametric eq. of a line).
8.

$$
\int_{0}^{4 \pi} \sqrt{e^{2 t}+4 e^{4 t}+e^{2 t}(\sin 2 t+2 \cos 2 t)^{2}} d t
$$

(Type: Number defined in terms of a certian definite integral).
9. $\left(t^{3}+1\right) \mathbf{i}+\left(t^{2}+1\right) \mathbf{j}+(\sin t+1) \mathbf{k}$
10. (i) $\left\langle 2+t-\frac{5}{\sqrt{14}} t^{2}, t-\frac{10}{\sqrt{14}} t^{2}, 1+t-\frac{15}{\sqrt{14}} t^{2}\right\rangle$. (Type: vector of functions of t)
(corrected Oct. 8, 2009, 6:43pm, thanks to Victoria G.) (ii)

$$
\sqrt{\left(1-\frac{10}{\sqrt{14} t}\right)^{2}+\left(1-\frac{20}{\sqrt{14} t}\right)^{2}+\left(1-\frac{30}{\sqrt{14} t}\right)^{2}}
$$

(Type: function of t).

