
MATH 251 (1-3,10 ), Dr. Z. , Solutions to Exam 2, Thurs., Nov. 19, 2009,
10:20-11:40am, SEC 118
1. (10 pts.) (i) Prove that

F = 〈 2e2x+3y+5z + y2 + 1 , 3e2x+3y+5z + 2xy + 1 , 5e2x+3y+5z 〉

is a conservative vector field.

(ii) Find a function f(x, y, z) such that F = 5f .

(iii) Compute f(1, 1, 1)− f(0, 0, 0)− e10 + 1

Ans. to (iii): 3

Sol.
(i) Here

F1 = 2e2x+3y+5z + y2 + 1 , F2 = 3e2x+3y+5z + 2xy + 1 , F3 = 5e2x+3y+5z

∂F1

∂y
= 6e2x+3y+5z + 2y ,

∂F2

∂x
= 6e2x+3y+5z + 2y .

∂F1

∂z
= 10e2x+3y+5z ,

∂F3

∂x
= 10e2x+3y+5z .

∂F2

∂z
= 15e2x+3y+5z ,

∂F3

∂y
= 15e2x+3y+5z .

So
∂F1

∂y
=
∂F2

∂x
,

∂F1

∂z
=
∂F3

∂x
,

∂F2

∂z
=
∂F3

∂y
,

and F is indeed conservative.

(ii) Since ∂f
∂x = 2e2x+3y+5z + y2 + 1, we have

f(x, y, z) =
∫

(2e2x+3y+5z + y2 + 1) dx = e2x+3y+5z + xy2 + x+ g(y, z) ,

where g(y, z) is yet-to be found. Taking derivatives with respect to y:

∂f

∂y
= 3e2x+3y+5z + 2xy +

∂g

∂y
.
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But we know that ∂f
∂y = 3e2x+3y+5z + 2xy + 1, so we have

3e2x+3y+5z + 2xy +
∂g

∂y
= 3e2x+3y+5z + 2xy + 1 .

Doing the algebra we get
∂g

∂y
= 1 .

Integrating with respect to y we get

g(y, z) =
∫

1 dy = y + h(z) ,

where h(z) is yet-to-be-found. By back-substitution we have:

f(x, y, z) = e2x+3y+5z + xy2 + x+ y + h(z) .

Finally, take partial-derivative with resepct to z getting

fz = 5e2x+3y+5z + h′(z) = 5e2x+3y+5z

that gives h′(z) = 0 so h(z) = C (constant), that we can ignore (i.e. take to be 0). So

f(x, y, z) = e2x+3y+5z + xy2 + x+ y .

(iii)

f(1, 1, 1)− f(0, 0, 0)− e10 + 1 = e10 + 1 · 12 + 1 + 1− (e0 + 0 · 02 + 0 + 0)− e10 + 1 = 3 .

Ans. to (iii) : 3 (type number).
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2. (10 points) Evaluate the line integral∫
C

F · dr ,

where C is given by the vector function r(t).

F(x, y, z) = yzi + xzj + xyk ,

r(t) = t3i + t2j + k , 0 ≤ t ≤ 1 .

Ans.: 1 (type number).

First Solution: The curve is x = t3, y = t2, z = 1, (0 ≤ t ≤ 1) or in vector-notation:

r(t) = 〈t3, t2, 1〉 ,

So
r′(t) = 〈3t2, 2t, 0〉 .∫

C

F · dr =
∫ 1

0

〈yz, xz, xy〉 · 〈3t2, 2t, 0〉dt

=
∫ 1

0

〈yz, xz, xy〉 · 〈3t2, 2t, 0〉dt =
∫ 1

0

〈(t2)(1), (t3)(1), (t3)(t2)〉 · 〈3t2, 2t, 0〉dt

=
∫ 1

0

(3t4 + 2t4 + 0) dt =
∫ 1

0

(5t4) dt = t5
∣∣∣1
0
= 1 .

Second Solution: This vector-field is conservative (check!), and it is easy to see by
inspection that f(x, y, z) = xyz is the potential function (check that 5f = F). So∫

C

F · dr = f(End)− f(Start) = f(1, 1, 1)− f(0, 0, 0) = 1− 0 = 1 .

Comments: To get full credit you only need to do one of the above, of course.
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3. (10 points) Evaluate ∫ ∫ ∫
E

9
π

(x2 + y2)3 dV ,

where E is the solid that lies within the cylinder x2 + y2 = 1, above the plane z = 0, and
below the cone z2 = 4x2 + 4y2.

Ans.: 4

Sol.: We need to use cylindrical coordinates. The “floor” is the circle r = 1 and the
ceiling is z2 = 4r2 which could mean z = 2r or z = −2r, but since the floor is the xy-plane,
obviously we take z = 2r. Remember that in cylindrical (and polar), x2 + y2 = r2, and
recall that dV = rdzdrdθ. The volume-integral of the problem is 9

π times∫ 2π

0

∫ 1

0

∫ 2r

0

(r2)3 rdzdrdθ =
∫ 2π

0

∫ 1

0

∫ 2r

0

r7dzdrdθ .

The inner integral is: ∫ 2r

0

r7 dz = r7(2r) = 2r8 .

The middle-integral is: ∫ 1

0

2r8 dr = 2
r9

9

∣∣∣1
0
=

2
9

.

The outside integral ∫ 2π

0

2
9
dθ =

4π
9

.

Now multiply by 9
π to get that the answer is

4π
9
· 9
π

= 4 .
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4. (10 points) Evaluate the iterated integral∫ 1

0

∫ 2x

x

∫ x+y

0

24z
19

dz dy dx .

Ans.: 1

Sol.: Let’s take the annoying 24
19 out of the integration (we get back to it at the end). The

inner integral is ∫ x+y

0

z dz =
z2

2

∣∣∣x+y

0
=

(x+ y)2

2
.

The middle integral is∫ 2x

x

(x+ y)2

2
dy =

(x+ y)3

6

∣∣∣y=2x

y=x
=

(x+ 2x)3

6
− (x+ x)3

6
=

(3x)3

6
− (2x)3

6
=

27x3

6
−8x3

6
=

19x3

6
.

The outside integral is ∫ 1

0

19x3

6
=

19x4

6 · 4

∣∣∣1
0
=

19
24

.

Finally, multiplying by the constant in front, we have

24
19
· 19

24
= 1 .

Comment: Most people, after the first step, expanded (x + y)2 as x2 + 2xy + y2 and
made the problem longer than it should be. It is very useful to memorize the integral of a
generalized power ∫

(ax+ b)n dx =
(ax+ b)n+1

a(n+ 1)
.

(Of course, here we need ∫
(ay + b)n dy =

(ay + b)n+1

a(n+ 1)
.

with a = 1 and b = x. )
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5. (10 points) Use the given transformation to evaluate the integral∫ ∫
R

20(2x+ y)2 dA ,

where R is the triangular region with vertices (0, 0),(2,−3), (3,−5); x = 3u − v, y =
−5u+ 2v.

Ans.: 5 .

Sol.: First, we need to find the counterparts of the three vertices:
For (0, 0), x = 0, y = 0 so we have to solve

3u− v = 0 ,−5u+ 2v = 0 .

whose solution is u = 0, v = 0, and so the point in the uv-plane corresponding to (x, y) =
(0, 0) is (0, 0).
For (2,−3), x = 2, y = −3 so we have to solve

3u− v = 2 ,−5u+ 2v = −3 .

From the first equationL v = 3u−2, plugging into the second, we get −5u+2(3u−2) = −3
which is u− 4 = −3 which gives u = 1, and by back substitution v = 3(1)− 2 = 1, and
so the point in the uv-plane corresponding to (x, y) = (2,−3) is (u, v) = (1, 1).
For (3,−5), x = 3, y = −5 so we have to solve

3u− v = 3 ,−5u+ 2v = −5 .

From the first equation v = 3u−3, plugging into the second, we get −5u+ 2(3u−3) = −5
which is u− 6 = −5 which gives u = 1, and by back substitution v = 3(1)− 3 = 0, and
so the point in the uv-plane corresponding to (x, y) = (3,−5) is (u, v) = (1, 0).
So the triangle in the (u, v)-plane is much simpler. It has vertices (0, 0), (1, 0), (1, 1) that
in type-I notation is:

{(u, v) | 0 ≤ u ≤ 1 , 0 ≤ v ≤ u} .

Next we have to compute the Jacobian, J :

J = (xu)(yv)− (xv)(yu) = (3)(2)− (−1)(−5) = 1 .

We now convert the xy-integral into the uv-language:∫ ∫
R′

20 (2(3u− v) + (−5u+ 2v))2 |J | dA =
∫ 1

0

∫ u

0

20(u)2dvdu .

The inner integral is 20u3 and the outer integral is
∫ 1

0
20u3 = 5u4

∣∣∣1
0
= 5.

Comment: Some people forgot to worry about the Jacobian. They still got the right
answer, since, by accident, the Jacobian happened to be 1 in this problem. Nevertheless
they lost 3 points.
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6. (10 points) Evaluate the iterated integral by converting to polar coordinates.

∫ 2

−2

∫ √4−x2

−
√

4−x2

27
64π

(x2 + y2)2 dy dx

Ans.: 9 .

Sol. Use polar coordinates. Recall that x2 + y2 in polar language is r2, so the integrand
is r4.
The region is the inside full circle of radius 2, center the origin, so a polar description of
the region is:

{(r, θ) |0 ≤ r ≤ 2 , 0 ≤ θ ≤ 2π} .

Also dA = rdrdθ, so our integral (ignoring the annoying constant 27
64π for now) is:∫ 2π

0

∫ 2

0

r4r dr dθ =
∫ 2π

0

∫ 2

0

r5 dr dθ .

The inside integral is r6

6

∣∣∣2
0
= 64

6 = 32
3 . The outside integral is

∫ 2π

0
32
3 dθ = 64π

3 . Finally,

multiplying by the annoying 27
64π we get that the answer is:

27
64π
· 64π

3
= 9 .
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7. (10 points) Let A be the number

A =
∫ 4

0

∫ 2

y/2

ex
2
dx dy .

What is 1 + e4 −A ? (Hint: Not even Dr. Z. can do
∫
ex

2
dx, so you must be clever, and

first change the order of integration.)

Ans.: 2

Sol. The integral is in type II format:

{(x, y)|0 ≤ y ≤ 4 , y/2 ≤ x ≤ 2}

If you draw it (do it!), you get a triangle with vertices (0, 0), (2, 0) and (2, 4). A type I
description of the same region is:

{(x, y)|0 ≤ x ≤ 2 , 0 ≤ y ≤ 2x}

So the type I formulation of the integral is:

A =
∫ 2

0

∫ 2x

0

ex
2
dydx .

The inner integral is ∫ 2x

0

ex
2
dy = ex

2
∫ 2x

0

dy = ex
2
(2x) .

The outer integral is: (do the substitution u = x2)

A =
∫ 2

0

2xex
2

= ex
2
∣∣∣2
0
= e4 − e0 = e4 − 1 .

Finally,
1 + e4 −A = 1 + e4 − (e4 − 1) = 2 .

Comment: Quite a few people only computed A and left the final answer as e4−1. Please
read the whole question. Being able to follow instructions is much more important than
multivariable calculus.
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8. (10 points) Calculate the double integral∫ ∫
R

27x2y2

(ln 2)(x3 + 1)
dA ,

R = {(x, y) | 0 ≤ x ≤ 1 , −1 ≤ y ≤ 1 } .

Ans.: 6 .

Sol. : The iterated integral is

27
ln 2

∫ 1

0

∫ 1

−1

27x2y2

(ln 2)(x3 + 1)
dydx =

The integrand is separable, and the region is a rectangle so we have:

27
ln 2

(
∫ 1

0

x2

x3 + 1
dx)(

∫ 1

−1

y2 dy) .

The first integral is almost of the form TOP/BOT where the TOP is the derivative of
BOT , and whose integral is ln |BOT |.∫ 1

0

x2

x3 + 1
dx =

1
3

∫ 1

0

3x2

x3 + 1
dx =

1
3

∫ 1

0

3x2

x3 + 1
dx =

1
3

ln |x3+1||10 =
1
3

(ln 2−ln 1) =
ln 2
3

.

The second integral is even simpler:∫ 1

−1

y2 dy =
y3

3

∣∣∣1
−1

=
1
3
− −1

3
=

2
3

.

Combining, we get that the answer is:

27
ln 2
· ln 2

3
· 2

3
= 6 .

9



9. (10 points) Use Lagrange multipliers to find the maximum value of the function
f(x, y) = x2y − 27 subject to the constraint x+ y = 6.

Ans.: 5 .

Sol. The goal function is f(x, y) = x2y−27. The constraint function is g(x, y) = x+y−6.

5f = 〈2xy , x2〉 , 5g = 〈1 , 1〉

We have to solve 5f = λ5 g. In this problem it is:

〈2xy , x2〉 = λ〈1 , 1〉 .

Spelling it out we have the equations

2xy = λ , x2 = λ

In addition we have the constraint equation x+ y = 6. It is always good to get rid of λ.
Subtracting the first from the second, we get

2xy − x2 = 0

Factorizing, we get x(2y − x) = 0 so we have x = 0 or x = 2y. The first option gives
the solution (x, y) = (0, 6), and the second one gives 2y + y = 6 so 3y = 6 so y = 2 and
x = 2 · 2 = 4, yielding (x, y) = (4, 2).
Now it is time to plug-in. f(0, 6) = −27 and f(4, 2) = 42 · 2 − 27 = 32 − 27 = 5. So the
minimum value is −27 and the maximum value is 5. But no one asked us about the
minimum value, so don’t mention it.
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10. (10 points) Find the local maximum and minimum values, and saddle point(s) of the
function f(x, y) = x4 + y4 − 4xy + 5.

Local maximum value(s): None

Local minimum value(s) 3 (at (1, 1) and (−1,−1))

saddle point(s): (0, 0)

Sol.:
fx = 4x3 − 4y , fy = 4y3 − 4x ,

For future reference

fxx = 12x2 , fxy = −4 , fyy = 12y2 .

We must first solve the system of two equations and two unknowns: fx = 0, fy = 0.

4x3 − 4y = 0 , 4y3 − 4x = 0 .

So y = x3 x = y3. Substituting the first equation into the second one gives

x = (x3)3 = x9

So
x9 − x = 0

Factoriong:
x(x8 − 1) = 0

giving x = 0, x = −1, x = 1. But y = x3 so when x = 0, y = 03 = 0, when x = 1,
y = 13 = 1 and when x = −1, y = (−1)3 = −1. So the three critical points are (−1,−1),
(0, 0), and (1, 1).
Now it is time to examine each point according to its merit.
When (x, y) = (0, 0), we have fxx = 0, fxy = −4, fyy = 0, soD = (0)(0)−(−4)2 = −16 < 0.
Since D is negative, (0, 0) is a saddle point.
When (x, y) = (1, 1), we have fxx = 12, fxy = −4, fyy = 12, so D = (12)(12) − (−4)2 =
144− 16 = 128 > 0. Since D is positive, it is either a max or a min. Since fxx is positive,
this is a local min. The local min value is f(1, 1) = 14 + 14 − 4(1)(1) + 5 = 3.
When (x, y) = (−1,−1), we have fxx = 12, fxy = −4, fyy = 12, so D = (12)(12)− (−4)2 =
144− 16 = 128 > 0. Since D is positive, it is either a max or a min. Since fxx is positive,
this is a local min. The local min value is f(−1,−1) = (−1)4+(−1)4−4(−1)(−1)+5 = 3.

Comment: Some people wrote for the value, 128. This is nonsense. The min value is ob-
tained by plugging-in the minimum point into f(x, y). The actual value of the discriminant
D is not important, only whether it is positive or negative.
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