Dr. Z's Math251 Handout #15.6 (2nd ed.) [Change of Variables in Multiple Integrals]

By Doron Zeilberger

Problem Type 16.5a: Find the Jacobian of the transformation

$$x = g(u, v, w)$$
 , $y = h(u, v, w)$, $z = k(u, v, w)$.

Example Problem 16.5a: Find the Jacobian of the transformation

$$x = u^2 v \quad , \quad y = v^2 w \quad , \quad z = w^2 u.$$

Steps

1. Compute all the entries in the Jacobian matrix

$$\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} .$$

Example

1. $\begin{vmatrix} 2uv & u^2 & 0 \\ 0 & 2vw & v^2 \\ w^2 & 0 & 2uw \end{vmatrix} .$

2. Evaluate the determinant:

$$\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} = \left(\frac{\partial x}{\partial u}\right) \begin{vmatrix} \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} - \left(\frac{\partial x}{\partial v}\right) \begin{vmatrix} \frac{\partial y}{\partial u} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial w} \end{vmatrix} = +\left(\frac{\partial x}{\partial w}\right) \begin{vmatrix} \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{vmatrix}$$

2.

$$= 2uv \begin{vmatrix} 2vw & v^2 \\ 0 & 2wu \end{vmatrix} - u^2 \begin{vmatrix} 0 & v^2 \\ w^2 & 2wu \end{vmatrix}$$

$$+0 \cdot \begin{vmatrix} 0 & 2vw \\ w^2 & 0 \end{vmatrix}$$

$$= 2uv[(2vw)(2uw)-0]-u^2[0-(v^2)(w^2)]+0$$

$$= 9u^2v^2w^2 .$$

Ans.: $9u^2v^2w^2$.

Problem Type 15.6b: Use the given transformation to evaluate the integral

$$\int \int_R F(x,y) \, dA \quad ,$$

where R is the triangular region with vertices $(p_1, p_2), (q_1, q_2), (r_1, r_2); x = au + bv, y = cu + dv.$

1

Example Problem 15.6b: Use the given transformation to evaluate the integral

$$\int \int_{R} (x+y) \, dA \quad ,$$

where R is the triangular region with vertices (0,0),(2,1),(1,2); x=2u+v, y=u+2v.

Steps

1. Figure out the region in the uv-plane that gets transformed. Since a triangle goes to a triangle, we need to find the 3 vertices. Solve for u, v in terms of x, y and find the three points. Call the new triangle R'.

Example

1. Since x = 2u + v, y = u + 2v, when (x,y) = (0,0) u = 0, v = 0 so the point (0,0) goes to the point (0,0). When (x,y) = (1,2), we have to solve the system 1 = 2u+v, 2 = u+2v giving us u = 0, v = 1 so (1,2) goes to (0,1). Similarly, (2,1) goes to (1,0). So the region in the uv-plane is the far simpler triangle whose vertices are (0,0), (1,0), (0,1). Let's call this region R'.

2. Find the Jacobian of the transformation. In this case of a so-called linear transformation, the Jacobian is simply ad-bc. Also express F(x,y) in terms of (u,v) using the transformation.

$$\int \int_R F(x,y) \, dA =$$

$$\int \int_{R'} F(au+bv,cu+dv) |(ad-bc)| \, dA \quad .$$

(Note that one must take the **absolute** value of the Jacobian)

2. The Jacobian is (2)(2) - (1)(1) = 3, so

$$\int \int_{R} (x+y) dA = \int \int_{R'} (2u+v+u+2v) \cdot |3| dA =$$

$$9 \int \int_{R'} (u+v) dA .$$

3. Draw the region (in this case triangle) in the *uv*- plane and express it as a type I (or type II) region. Then set-up the appropriate iterated integral, by deciding on the **main road** and the **side streets**.

3. The region is the triangle bounded by the axes and the line u + v = 1. It can be written as

$$\{(u,v) \mid 0 \le u \le 1, 0 \le v \le 1-u \}$$
.

Our area-integral is thus equal to the iterated integral

$$9\int_0^1 \int_0^{1-u} (u+v) \, dv \, du$$
.

The inner integral is

$$\int_0^{1-u} (u+v) \, dv = uv + \frac{v^2}{2} \Big|_0^{1-u}$$

$$= u(1-u) + \frac{(1-u)^2}{2} = (1-u^2)/2 ,$$

and the whole integral is

$$\frac{9}{2} \int_0^1 (1 - u^2) \, du = \frac{9}{2} \left[u - \frac{u^3}{3} \right] \Big|_0^1 = \frac{9}{2} \cdot \frac{2}{3} = 3 \quad .$$

Ans.: 3.

A Problem from a previous Final

Find the Jacobian of the transformation

$$x = u + v + w$$
 , $y = u^2 + v^2 + w^2$, $z = u^3 + v^3 + w^3$.

Simplify as much as you can!

Ans.: $6(vw^2 - v^2w - uw^2 + u^2w + uv^2 - u^2v)$.

Another Problem from a Previous Final

Use the transformation

$$x = 2u + v$$
 , $y = u + 2v$,

to evaluate the integral

$$\int \int_{R} (2x - y) \, dA$$

where R is the triangular region with vertices (0,0), (2,1), and (1,2).

Ans.: $\frac{3}{2}$.