Dr. Z's Math251 Handout \#15.4b [Integrations in Cylindrical and Spherical Coordinates]

By Doron Zeilberger
Problem Type 15.4ba: Evaluate

$$
\iiint_{E} F(x, y, z) d V
$$

where E is a solid region descibed in terms of cylinders and other stuff.
Example Problem 15.4ba: Evaluate

$$
\iiint_{E} x^{2} d V
$$

where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$, and below the cone $z^{2}=4 x^{2}+4 y^{2}$.

Steps

1. Chances are that you are supposed to use cylindrical coordinates. Express E in the form

$$
E=\{(r, \theta, z) \mid \alpha \leq \theta \leq \beta,
$$

$\left.h_{1}(\theta) \leq r \leq h_{2}(\theta), u_{1}(r, \theta) \leq z \leq u_{2}(r, \theta)\right\}$

Example

1. Since $x^{2}+y^{2}=r^{2}$, the cone $z^{2}=$ $4 x^{2}+4 y^{2}$ can be writen $z^{2}=4 r^{2}$. The cylinder $x^{2}+y^{2}=1$ is really $r=1$, and this is the "base". $z^{2}=4 r^{2}$ means that z ranges between $-2 r$ and $2 r$. but we are also told that our solid is above the plane $z=0$, so z ranges between 0 and $2 r$. It turns out that

$$
E=\{(r, \theta, z) \mid 0 \leq \theta \leq 2 \pi, 0 \leq r \leq 1,0 \leq z \leq 2 r\} .
$$

2. Express the integrand $F(x, y, z)$ in cylindrical coordinates, using the "dictionary"
drical coordinates, using the "dictionary"
$x=r \cos \theta \quad, \quad y=r \sin \theta \quad, \quad x^{2}+y^{2}=r^{2} \quad . \quad \int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{2 r}(r \cos \theta)^{2} r d z d r d \theta \quad$.
3.

Also $d V=r d r d \theta d z$. Then set up the volume integral as an iterated integral
$\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r, \theta)}^{u_{2}(r, \theta)} F(r \cos \theta, r \sin \theta, z) r d z d r d \theta$.
3. Evalute the integral from the inside to the outside.
3. The inside integral is:

$$
\int_{0}^{2 r}(r \cos \theta)^{2} r d z=r^{3} \cos ^{2} \theta \int_{0}^{2 r} d z=2 r^{4} \cos ^{2} \theta .
$$

The middle integral is

$$
\begin{gathered}
\int_{0}^{1}\left[\int_{-2 r}^{2 r}(r \cos \theta)^{2} r d z\right] d r \\
=\int_{0}^{1} 2 r^{4} \cos ^{2} \theta d r=\cos ^{2} \theta \int_{0}^{1} 2 r^{4} d r=\frac{2}{5} \cos ^{2} \theta .
\end{gathered}
$$

The outer integral is

$$
\begin{gathered}
\int_{0}^{2 \pi}\left[\int_{0}^{1} \int_{-2 r}^{2 r}(r \cos \theta)^{2} r d z d r\right] d \theta \\
=\int_{0}^{2 \pi} \frac{2}{5} \cos ^{2} \theta d \theta \\
=\frac{2}{5} \int_{0}^{2 \pi} \frac{1+\cos 2 \theta}{2} d \theta \\
=\left.\frac{2}{5} \cdot\left[\frac{\theta+(1 / 2) \sin 2 \theta}{2}\right]\right|_{0} ^{2 \pi}=\frac{2 \pi}{5} .
\end{gathered}
$$

Ans.: $\frac{2 \pi}{5}$.
Problem Type 15.4bb: Evaluate

$$
\iiint_{E} F(x, y, z) d V
$$

where E is bounded by the $x z$-plane and the hemispheres $y=\sqrt{r_{1}^{2}-x^{2}-z^{2}}$ and $y=\sqrt{r_{2}^{2}-x^{2}-z^{2}}$.

Example Problem 15.4bb: Evaluate

$$
\iiint_{E} x^{2} d V
$$

where E is bounded by the $x z$-plane and the hemispheres $y=\sqrt{1-x^{2}-z^{2}}$ and $y=\sqrt{4-x^{2}-z^{2}}$.

Steps

1. This is best handled with spherical coordinates. The hemispere $y=\sqrt{R^{2}-x^{2}-z^{2}}$ is half of the sphere $x^{2}+y^{2}+z^{2}=R^{2} \quad E=\{(\rho, \theta, \phi) \mid 1 \leq \rho \leq 2,0 \leq \theta \leq \pi, 0 \leq \phi \leq \pi\} \quad$. whose equation in spherical coordinates is really simple: $\rho=R$. Since $y>0$ (the square-root is always positive), the range of θ is between 0 and π. ρ is between r_{1} and r_{2} and ϕ has its full range 0 to π. So
$E=\left\{(\rho, \theta, \phi) \mid r_{1} \leq \rho \leq r_{2}, 0 \leq \theta \leq \pi, 0 \leq \phi \leq \pi\right\}$.
2. Using the 'dictionary'
$x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta$,
$z=\rho \cos \phi \quad ; \quad d V=\rho^{2} \sin \phi d \rho d \theta d \phi$.
Convert the volume integral into an iterated spherical integral (using the description of E in step 1).

$$
\int_{0}^{\pi} \int_{0}^{\pi} \int_{r_{1}}^{r_{2}} F(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
$$

3. If you are lucky and all the limits of integration are numbers (do not involve ρ, ϕ or θ) and the integrand is a product of functions of a single variable, then the iterated integral is simply a product of three simple integrals. Express the big integral like that, and evaluate each single integral separately. Then multiply them together.

Warning: This is only possible if all the limits of integration are numbers and the integrand is completely separable as a product of functions of a single variable.
3.

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{\pi} \int_{1}^{2} \rho^{4} \sin ^{3} \phi \cos ^{2} \theta d \rho d \theta d \phi \\
= & \int_{0}^{\pi} \sin ^{3} \phi d \phi \int_{0}^{\pi} \cos ^{2} \theta d \theta \int_{1}^{2} \rho^{4} d \rho .
\end{aligned}
$$

The first integral is $(u=\cos \phi)$

$$
\begin{aligned}
& \int_{0}^{\pi} \sin ^{3} \phi d \phi=\int_{0}^{\pi} \sin ^{2} \phi d(-\cos \phi)= \\
& \int_{0}^{\pi}\left(1-\cos ^{2} \phi\right) d(-\cos \phi)=-\int_{1}^{-1}\left(1-u^{2}\right) d u= \\
& -u+\left.\frac{u^{3}}{3}\right|_{1} ^{-1}=\frac{4}{3}
\end{aligned}
$$

The second integral is

$$
\begin{gathered}
\int_{0}^{\pi} \cos ^{2} \theta d \theta=\int_{0}^{\pi} \frac{1+\cos 2 \theta}{2} d \theta= \\
=\frac{\theta}{2}+\left.\frac{\sin 2 \theta}{4}\right|_{0} ^{\pi}=\frac{\pi}{2} .
\end{gathered}
$$

The third integral is

$$
\int_{1}^{2} \rho^{4} d \rho=\left.\frac{\rho^{5}}{5}\right|_{1} ^{2}=\frac{2^{5}-1^{5}}{5}=\frac{31}{5} .
$$

Multipluing these three single-integrals, we get that the original triple integral equals

$$
\frac{4}{3} \cdot \frac{\pi}{2} \cdot \frac{31}{5}=\frac{62 \pi}{15}
$$

Ans.: $\frac{62 \pi}{15}$.

A Problem from a Previous Final: Evaluate

$$
\iiint_{B} 5\left(x^{2}+y^{2}+z^{2}\right)^{2} d V
$$

where B is the ball

$$
\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 4\right\}
$$

Ans.: $2560 \pi / 7$.

