Dr. Z's Math251 Handout \#12.5 (2nd ed.) [Planes in Three Space]

By Doron Zeilberger
Problem Type 12.5a: Find an equation of the plane that passes through three given points
Example Problem 12.5a: Find an equation of the plane that passes through the points $(1,1,1)$, $(2,0,1),(2,1,0)$.

Steps

1. Calling these points P, Q, R find the vectors $\mathbf{P Q}$ and $\mathbf{P R}$ by doing $Q-P$ and $R-P$.
2. Find a vector normal to the plane by computing the cross-product $\mathbf{P Q} \times \mathbf{P R}$促

Example

1. $P=(1,1,1), Q=(2,0,1), R=(2,1,0)$,
$\mathbf{P Q}=Q-P=\langle 2-1,0-1,1-1\rangle=\langle 1,-1,0\rangle$,
$\mathbf{P R}=R-P=\langle 2-1,1-1,0-1\rangle=\langle 1,0,-1\rangle$.
2.

$$
\mathbf{P Q} \times \mathbf{P R}=\langle 1,-1,0\rangle \times\langle 1,0,-1\rangle=
$$

$$
\begin{gathered}
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right|= \\
\mathbf{i}\left|\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right| \\
=\mathbf{i}+\mathbf{j}+\mathbf{k}=\langle 1,1,1\rangle .
\end{gathered}
$$

This is the normal vector $\mathbf{n}=\langle a, b, c\rangle$.
So $\mathbf{n}=\langle a, b, c\rangle=\langle 1,1,1\rangle$
3. Pick any of the three points (it does not matter which) as the refence point $\left(x_{0}, y_{0}, z_{0}\right)$ and use the formula
$a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 . \quad 1 \cdot(x-1)+1 \cdot(y-1)+1 \cdot(z-1)=0$
and expanding we get

$$
x+y+z=3 .
$$

Ans.: An equation for the plane passing through P, Q and R is $x+y+z=3$.

Check: Plug-in all the three points into the equation and make sure that they agree.

Problem Type 12.5b: Find direction numbers for the line of intersections of the planes $a_{1} x+$ $b_{1} y+c_{1} z=d_{1}$ and $a_{2} x+b_{2} y+c_{2} z=d_{2}$.

Example Problem 12.5b: Find direction numbers for the line of intersections of the planes $2 x+3 y+4 z=2$ and $-3 x+2 y+3 z=1$.

Steps

1. By looking at the coeffs. of x, y, z extract the normal vectors $\mathbf{n}_{\mathbf{1}}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ and $\mathbf{n}_{\mathbf{2}}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$.

Note: the numbers on the right sides
2. Take the cross-product $\mathbf{n}_{\mathbf{1}} \times \mathbf{n}_{\mathbf{2}}$. The components are the direction numbers of the line of intersection.

Example

1. $\mathbf{n}_{\mathbf{1}}=\langle 2,3,4\rangle$ and $\mathbf{n}_{\mathbf{2}}=\langle-3,2,3\rangle$.
$\left(d_{1}, d_{2}\right)$ are not needed.
2.

$\mathbf{n}_{\mathbf{1}} \times \mathbf{n}_{\mathbf{2}}=\langle 2,3,4\rangle \times\langle-3,2,3\rangle=\langle 1,-18,13\rangle$.
(You do it!)
Ans.: The direction numbers are $\langle 1,-18,13\rangle$.

Problem from a previous Final

Find an equation for the plane through the point $(1,0,2)$ that contains the line

$$
\mathbf{r}(t)=\langle 1,1,1\rangle+t\langle 1,-1,0\rangle .
$$

Simplify as much as you can!
Ans.: $x+y+z=3$.

