Dr. Z's Math251 Handout #12.5 (2nd ed.) [Planes in Three Space]

By Doron Zeilberger

Problem Type 12.5a: Find an equation of the plane that passes through three given points

Example Problem 12.5a: Find an equation of the plane that passes through the points \((1, 1, 1), (2, 0, 1), (2, 1, 0)\).

Steps

1. Calling these points \(P, Q, R\) find the vectors \(PQ\) and \(PR\) by doing \(Q - P\) and \(R - P\).

 \[
 \begin{align*}
P &= (1, 1, 1), \\
Q &= (2, 0, 1), \\
R &= (2, 1, 0),
\end{align*}
\]

 \[
 \begin{align*}
PQ &= Q - P = \langle 2 - 1, 0 - 1, 1 - 1 \rangle = \langle 1, -1, 0 \rangle, \\
PR &= R - P = \langle 2 - 1, 1 - 0, 0 - 1 \rangle = \langle 1, 0, -1 \rangle.
\end{align*}
\]

2. Find a vector normal to the plane by computing the cross-product \(PQ \times PR\).

 \[
 \begin{align*}
PQ \times PR &= \langle 1, -1, 0 \rangle \times \langle 1, 0, -1 \rangle = \\
 &= \begin{vmatrix}
i & j & k \\
1 & -1 & 0 \\
1 & 0 & -1
\end{vmatrix} = \\
 &= \begin{vmatrix}
i & -1 & 0 \\
0 & -1 & 1 \\
0 & 1 & 1
\end{vmatrix} + \begin{vmatrix}
i & 1 & 0 \\
-1 & 1 & -1 \\
1 & 0 & 1
\end{vmatrix} = \\
 &= i + j + k = \langle 1, 1, 1 \rangle.
\end{align*}
\]

This is the **normal vector** \(n = \langle a, b, c \rangle\).

So \(n = \langle a, b, c \rangle = \langle 1, 1, 1 \rangle\)
3. Pick any of the three points (it does not matter which) as the reference point \((x_0, y_0, z_0)\) and use the formula

\[
a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 .
\]

3. Picking \(P\) we get \((x_0, y_0, z_0) = (1, 1, 1)\), since \(a = 1, b = 1, c = 1\), we get that an equation is

\[
1 \cdot (x - 1) + 1 \cdot (y - 1) + 1 \cdot (z - 1) = 0
\]

and expanding we get

\[
x + y + z = 3 .
\]

Ans.: An equation for the plane passing through \(P, Q\) and \(R\) is

\[
x + y + z = 3.
\]

Check: Plug-in all the three points into the equation and make sure that they agree.

Problem Type 12.5b: Find direction numbers for the line of intersections of the planes \(a_1x + b_1y + c_1z = d_1\) and \(a_2x + b_2y + c_2z = d_2\).

Example Problem 12.5b: Find direction numbers for the line of intersections of the planes

\[
2x + 3y + 4z = 2 \text{ and } -3x + 2y + 3z = 1.
\]

Steps

1. By looking at the coeffs. of \(x, y, z\) extract the **normal vectors** \(\mathbf{n}_1 = \langle a_1, b_1, c_1 \rangle\) and \(\mathbf{n}_2 = \langle a_2, b_2, c_2 \rangle\).

Note: the numbers on the right sides \((d_1, d_2)\) are not needed.

2. Take the cross-product \(\mathbf{n}_1 \times \mathbf{n}_2\). The components are the **direction numbers** of the line of intersection.

Example

1. \(\mathbf{n}_1 = \langle 2, 3, 4 \rangle\) and \(\mathbf{n}_2 = \langle -3, 2, 3 \rangle\).

2. \(\mathbf{n}_1 \times \mathbf{n}_2 = \langle 2, 3, 4 \rangle \times \langle -3, 2, 3 \rangle = \langle 1, -18, 13 \rangle\).

(You do it!)

Ans.: The direction numbers are \(\langle 1, -18, 13 \rangle\).
Problem from a previous Final

Find an equation for the plane through the point $(1, 0, 2)$ that contains the line

$$
\mathbf{r}(t) = \langle 1, 1, 1 \rangle + t\langle 1, -1, 0 \rangle.
$$

Simplify as much as you can!

Ans.: $x + y + z = 3$.