Dr. Z's Math251 Handout (2nd ed.) \#12.2 [Vectors in three dimensions]

By Doron Zeilberger
Problem Type 12.2a: Show that the triangle with vertices $P=\left(p_{1}, p_{2}, p_{3}\right), Q=\left(q_{1}, q_{2}, q_{3}\right)$, $R=\left(r_{1}, r_{2}, r_{3}\right)$ is an equilateral triangle.

Example Problem 12.2a: Show that the triangle with vertices $P=(-4,8,0), Q=(2,4,-2)$, $R=(-2,2,4)$ is an equilateral triangle.

Steps
 Example

1. Use the distance formula
2. Here $P=(-4,8,0), Q=(2,4,-2)$, $R=(-2,2,4)$, so

$$
\begin{gathered}
\left|P_{1} P_{2}\right|= \\
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}},
\end{gathered}
$$

$$
|P Q|=\sqrt{(2-(-4))^{2}+(4-8)^{2}+((-2)-0)^{2}}=\sqrt{36+16+4}
$$

for the distance between two points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$, to find the three dis-

$$
\begin{aligned}
& |P R|=\sqrt{((-2)-4)^{2}+(2-8)^{2}+(4-0)^{2}}=\sqrt{4+36+16} \\
& \quad=\sqrt{56} \\
& |Q R|=\sqrt{((-2)-2)^{2}+(2-4)^{2}+(-4-(-2))^{2}}=\sqrt{16+4+36} \\
& =\sqrt{56}
\end{aligned}
$$ tances $|P Q|,|P R|,|Q R|$.

2. Check whether theese three distances are all the same. It there are, it is an equilateral triangle, otherwise not.
3. All the distances are the same $(\sqrt{56})$.

Ans.: It is an equilateral triangle since all the sides have equal length, namely: $\sqrt{56}$.

Problem Type 12.2b: Find an equation of the sphere with center $C(h, k, l)$ and radius r.
Example Problem 12.2b: Find an equation of the sphere with center $(1,2,-1)$ and radius 2.

Steps

1. Implement the formula

$$
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}
$$

2. Expand everything and move everything to the left leaving 0 at the right side. Also rearange terms so that the quadratic terms come before the linear terms.

Example

1. In this problem $(h, k, l)=(1,2,-1)$ and $r=2$ so the equation is:
$(x-1)^{2}+(y-2)^{2}+(z-(-1))^{2}=2^{2}$,
which is the same as

$$
(x-1)^{2}+(y-2)^{2}+(z+1)^{2}=2^{2} .
$$

2.

$$
x^{2}-2 x+1+y^{2}-4 y+4+z^{2}+2 z+1=4,
$$

Cleaning up:

$$
x^{2}+y^{2}+z^{2}-2 x-4 y+2 z+2=0 .
$$

Ans.: $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z+2=0$.

Problem Type 12.2c: Show that the equation represents a sphere, and find the center and radius.

$$
x^{2}+y^{2}+z^{2}+a x+b y+c z+d=0 .
$$

Example Problem 12.2c: Show that the equation represents a sphere, and find the center and radius.

$$
x^{2}+y^{2}+z^{2}-2 x-4 y+2 z+2=0 .
$$

Steps

1. The coefficients of x^{2}, y^{2}, z^{2} should all be the same! If they are not, for example, if the equation is $x^{2}+y^{2}+3 z^{2}+2 x+$ $6 y-5+11=0$ where the coefficients are not all the same, then it is not a sphere. Usually they are all 1 , If the coefficient of x^{2} (=coeff. of $y^{2}=$ coeff. of $\left.z^{2}\right)$ is not 1 , divide the whole equation by that coefficient, making it 1 . The coeffs. of x^{2}, y^{2}, z^{2} should now be all 1 . Now group the terms so that x^{2} is next to the x term, y^{2} is next to the y term, and z^{2} is next to the z term.
2. For each part separately, complete the square, using $X^{2}+a X=(X+a / 2)^{2}-$ $(a / 2)^{2}$

Example

1. In this problem, the coeffs. of x^{2} is already 1 , as are those of y^{2} and z^{2}. Grouping the x-terms, y-terms and z-terms, we get:

$$
x^{2}-2 x+y^{2}-4 y+z^{2}+2 z+2=0
$$

2.

$$
\begin{aligned}
& x^{2}-2 x=(x-1)^{2}-1 \\
& y^{2}-4 y=(y-2)^{2}-4 \\
& z^{2}+2 z=(z+1)^{2}-1
\end{aligned}
$$

So

$$
x^{2}-2 x+y^{2}-4 y+z^{2}+2 z+2=0
$$

becomes
$(x-1)^{2}-1+(y-2)^{2}-4+(z+1)^{2}-1+2=0$
3. Move all the numbers to the right and express the resulting number on the right as r^{2}. Compare with the equation of the sphere

$$
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}
$$

and read-off the center (h, k, l) and the radious, r.
3.
$(x-1)^{2}-1+(y-2)^{2}-4+(z+1)^{2}-1+2=0$
is the same as

$$
(x-1)^{2}+(y-2)^{2}+(z+1)^{2}=4
$$

which, in turn, is the same as
$(x-1)^{2}+(y-2)^{2}+(z-(-1))^{2}=2^{2}$,
which is an equation of a sphere with center $(1,2,-1)$ and radius 2.

