Dr. Z's Math251 Handout (2nd ed.) #12.2 [Vectors in three dimensions]

By Doron Zeilberger

Problem Type 12.2a: Show that the triangle with vertices $P = (p_1, p_2, p_3)$, $Q = (q_1, q_2, q_3)$, $R = (r_1, r_2, r_3)$ is an equilateral triangle.

Example Problem 12.2a: Show that the triangle with vertices P = (-4, 8, 0), Q = (2, 4, -2), R = (-2, 2, 4) is an equilateral triangle.

Steps

1. Use the distance formula

$$|P_1P_2| =$$

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$
,

for the distance between two points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$, to find the three distances |PQ|, |PR|, |QR|.

Example

1. Here P = (-4, 8, 0), Q = (2, 4, -2),

$$R = (-2, 2, 4)$$
, so

 $|PQ| = \sqrt{(2 - (-4))^2 + (4 - 8)^2 + ((-2) - 0)^2} = \sqrt{36 + 16 + 4}$

$$=\sqrt{56}$$
 .

 $|PR| = \sqrt{((-2) - 4)^2 + (2 - 8)^2 + (4 - 0)^2} = \sqrt{4 + 36 + 16}$ = $\sqrt{56}$.

$$|QR| = \sqrt{((-2) - 2)^2 + (2 - 4)^2 + (-4 - (-2))^2} = \sqrt{16 + 4 + 36}$$

= $\sqrt{56}$

- 2. Check whether theese three distances are all the same. It there are, it is an equilateral triangle, otherwise not.
- **2.** All the distances are the same $(\sqrt{56})$. **Ans.**: It is an equilateral triangle since all the sides have equal length, namely: $\sqrt{56}$.

Problem Type 12.2b: Find an equation of the sphere with center C(h, k, l) and radius r.

Example Problem 12.2b: Find an equation of the sphere with center (1, 2, -1) and radius 2.

Steps

1. Implement the formula

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

Example

1. In this problem (h, k, l) = (1, 2, -1) and r = 2 so the equation is:

$$(x-1)^2 + (y-2)^2 + (z-(-1))^2 = 2^2$$
,

which is the same as

$$(x-1)^2 + (y-2)^2 + (z+1)^2 = 2^2$$
.

2. Expand everything and move everything to the left leaving 0 at the right side. Also rearange terms so that the quadratic terms come before the linear terms.

2.

$$x^2 - 2x + 1 + y^2 - 4y + 4 + z^2 + 2z + 1 = 4 \quad ,$$

Cleaning up:

$$x^2 + y^2 + z^2 - 2x - 4y + 2z + 2 = 0 \quad .$$

Ans.:
$$x^2 + y^2 + z^2 - 2x - 4y + 2z + 2 = 0$$
.

Problem Type 12.2c: Show that the equation represents a sphere, and find the center and radius.

$$x^2 + y^2 + z^2 + ax + by + cz + d = 0$$
.

Example Problem 12.2c: Show that the equation represents a sphere, and find the center and radius.

$$x^2 + y^2 + z^2 - 2x - 4y + 2z + 2 = 0$$
.

Steps

1. The coefficients of x^2, y^2, z^2 should all be the same! If they are not, for example, if the equation is $x^2 + y^2 + 3z^2 + 2x + 6y - 5 + 11 = 0$ where the coefficients are not all the same, then it is **not** a sphere. Usually they are all 1, If the coefficient of x^2 (=coeff. of y^2 =coeff. of z^2) is not 1, divide the whole equation by that coefficient, making it 1. The coeffs. of x^2, y^2, z^2 should now be all 1. Now group the terms so that x^2 is next to the x term, x0 is next to the x1 term, x2 is next to the x3 term.

2. For each part separately, complete the square, using $X^2 + aX = (X + a/2)^2 - (a/2)^2$

Example

1. In this problem, the coeffs. of x^2 is already 1, as are those of y^2 and z^2 . Grouping the x-terms, y-terms and z-terms, we get:

$$x^2 - 2x + y^2 - 4y + z^2 + 2z + 2 = 0$$

2.

$$x^{2} - 2x = (x - 1)^{2} - 1$$
$$y^{2} - 4y = (y - 2)^{2} - 4$$
$$z^{2} + 2z = (z + 1)^{2} - 1$$

So

$$x^2 - 2x + y^2 - 4y + z^2 + 2z + 2 = 0$$

becomes

$$(x-1)^2-1+(y-2)^2-4+(z+1)^2-1+2=0$$

3. Move all the numbers to the right and express the resulting number on the right as r^2 . Compare with the equation of the sphere

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$
,

and read-off the **center** (h, k, l) and the **radious**, r.

3.

$$(x-1)^2 - 1 + (y-2)^2 - 4 + (z+1)^2 - 1 + 2 = 0$$

is the same as

$$(x-1)^2 + (y-2)^2 + (z+1)^2 = 4$$

which, in turn, is the same as

$$(x-1)^2 + (y-2)^2 + (z-(-1))^2 = 2^2$$
,

which is an equation of a sphere with **center** (1, 2, -1) and **radius** 2.