Dr. Z's Math251 Handout #14.6 [Directional Derivatives and the Gradient Vector]

By Doron Zeilberger

Problem Type 14.6a: Find the directinal derivative of the function f(x, y, z) at the point (x_0, y_0, z_0) in the direction $\langle v_1, v_2, v_3 \rangle$.

Example Problem 14,6a: Find the directinal derivative of the function $f(x, y, z) = \ln(x^2 + y^2 + z^2)$ at the point (2, 1, 3) in the direction $\langle 1, 2, 2 \rangle$.

Steps

1. Find the gradient $\nabla f = \langle f_x, f_y, f_z \rangle$ by taking all the first partial derivatives. Also find the unit vector in the direction of $\langle v_1, v_2, v_3 \rangle$ by dividing by its length.

Example

1.

$$f_x = \frac{2x}{x^2 + y^2 + z^2}, \quad f_y = \frac{2y}{x^2 + y^2 + z^2}, \quad f_z = \frac{2z}{x^2 + y^2 + z^2}$$
So
$$\nabla f = \langle \frac{2x}{x^2 + y^2 + z^2}, \frac{2y}{x^2 + y^2 + z^2}, \frac{2z}{x^2 + y^2 + z^2} \rangle$$
$$|\langle 1, 2, 2 \rangle| = \sqrt{1^2 + 2^2 + 2^2} = 3, \text{ so}$$

 $\mathbf{u} = \frac{1}{3} \langle 1, 2, 2 \rangle = \langle \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle \quad .$

2. Plug-in $x = x_0, y = y_0, z = z_0$ into ∇f .

$$\nabla f(2,1,3) = \langle \frac{2 \cdot 2}{2^2 + 1^2 + 3^2}, \frac{2 \cdot 1}{2^2 + 1^2 + 3^2}, \frac{2 \cdot 3}{2^2 + 1^2 + 3^2} \rangle$$
$$= \langle \frac{2}{7}, \frac{1}{7}, \frac{3}{7} \rangle \quad .$$

2.

3. Take the dot product $\bigtriangledown f.\mathbf{u}$.

3. $\langle \frac{2}{7}, \frac{1}{7}, \frac{3}{7} \rangle \cdot \langle \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle$ $= \frac{2}{7} \cdot \frac{1}{3} + \frac{1}{7} \cdot \frac{2}{3} + \frac{3}{7} \cdot \frac{2}{3} = \frac{10}{21}$ A note. The recursted directional direction

Ans.: The requested directional derivative is $\frac{10}{21}$.

Problem Type 14.6b: Find the maximum rate of change of f at the given point and the direction in which it occurs.

$$f(x,y) = Expression(x,y) \quad , \quad (x_0,y_0)$$

Example Problem 14.6b: Find the maximum rate of change of f at the given point and the direction in which it occurs.

$$f(x,y) = \sin(xy)$$
, (1,0).

Steps

Example

1. Find the gradient $abla f_x = y \cos(xy), f_y = x \cos(xy). \text{ So}$ $abla f_x = y \cos(xy), f_y = x \cos(xy). \text{ So}$ $abla f_x = y \cos(xy), x \cos(xy) \text{ So}$ $abla f_y = \langle f_x, f_y \rangle = \langle y \cos(xy), x \cos(xy) \rangle \quad .$

2. Plug-in
$$x = x_0, y = y_0$$
 into $\bigtriangledown f$.

$$\nabla f(1,0) = \langle 0 \cdot \cos(0), 1 \cdot \cos(0) \rangle = \langle 0,1 \rangle$$
.

3. The maximum rate of change of f is simply the length of $\bigtriangledown f$ at the designated point. The direction in which is occurs is that direction. So find the unit vector in that direction.

3.

2.

$$|\langle 0,1\rangle| = \sqrt{0^2 + 1^2} = 1$$
.

 $\langle 0,1\rangle$ is already a unit vector, so the direction is $\langle 0,1\rangle$.

Ans.: The maximum rate of change is 1 in the direction $\langle 0, 1 \rangle$ (or **j**).